1
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
2
|
Azizi S, Moradi Birgani P, Ashtiyani M, Irani A, Shahrokhi A, Meydanloo K, Mirbagheri MM. The Relationship between Structure of the Corticoreticular Tract and Walking Capacity in Children with Cerebral Palsy. J Biomed Phys Eng 2024; 14:79-88. [PMID: 38357607 PMCID: PMC10862120 DOI: 10.31661/jbpe.v0i0.2104-1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 02/16/2024]
Abstract
Background Disruption in the descending pathways may lead to gait impairments in Cerebral Palsy (CP) children. Though, the mechanisms behind walking problems have not been completely understood. Objective We aimed to define the relationship between the structure of the corticoreticular tract (CRT) and walking capacity in children with CP. Material and Methods This is a retrospective, observational, and cross-sectional study. Twenty-six children with CP between 4 to 15 years old participated. Also, we used existed data of healthy children aged 4 to 15 years old. CRT structure was characterized using diffusion tensor imaging (DTI). The DTI parameters extracted to quantify CRT structure included: fractional anisotropy (FA), mean (MD), axial (AD), and radial (RD) diffusivity. Balance and walking capacity was evaluated using popular clinical measures, including the Berg balance scale (BBS), Timed-Up-and-Go (TUG; balance and mobility), six-minute walk test (6 MWT; gait endurance), and 10-meter walk Test (10 MWT; gait speed). Results There are significant differences between MD, AD, and RD in CP and healthy groups. Brain injury leads to various patterns of the CRT structure in children with CP. In the CP group with abnormal CRT patterns, DTI parameters of the more affected CRT are significantly correlated with walking balance, speed, and endurance measures. Conclusion Considering the high inter-subject variability, the variability of CRT patterns is vital for determining the nature of changes in CRT structure, their relationship with gait impairment, and understanding the underlying mechanisms of movement disorders. This information is also important for the development or prescription of an effective rehabilitation target for individualizing treatment.
Collapse
Affiliation(s)
- Shahla Azizi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical, Tehran, Iran
- Department of Electrical and Electronic Engineering, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - Parmida Moradi Birgani
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical, Tehran, Iran
| | - Meghdad Ashtiyani
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Irani
- Department of Occupational Therapy, Faculty of Rehabilitation, Shahid Beheshti University of Medical Sciences Health Services, Tehran, Iran
| | - Amin Shahrokhi
- Faculty of Medicine, Tehran University of Medical, Tehran, Iran
| | - Khadijeh Meydanloo
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Mirbagheri
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical, Tehran, Iran
- Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, United States
| |
Collapse
|
3
|
Charalambous CC, Hadjipapas A. Is there frequency-specificity in the motor control of walking? The putative differential role of alpha and beta oscillations. Front Syst Neurosci 2022; 16:922841. [PMID: 36387306 PMCID: PMC9650482 DOI: 10.3389/fnsys.2022.922841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2023] Open
Abstract
Alpha and beta oscillations have been assessed thoroughly during walking due to their potential role as proxies of the corticoreticulospinal tract (CReST) and corticospinal tract (CST), respectively. Given that damage to a descending tract after stroke can cause walking deficits, detailed knowledge of how these oscillations mechanistically contribute to walking could be utilized in strategies for post-stroke locomotor recovery. In this review, the goal was to summarize, synthesize, and discuss the existing evidence on the potential differential role of these oscillations on the motor descending drive, the effect of transcranial alternate current stimulation (tACS) on neurotypical and post-stroke walking, and to discuss remaining gaps in knowledge, future directions, and methodological considerations. Electrophysiological studies of corticomuscular, intermuscular, and intramuscular coherence during walking clearly demonstrate that beta oscillations are predominantly present in the dorsiflexors during the swing phase and may be absent post-stroke. The role of alpha oscillations, however, has not been pinpointed as clearly. We concluded that both animal and human studies should focus on the electrophysiological characterization of alpha oscillations and their potential role to the CReST. Another approach in elucidating the role of these oscillations is to modulate them and then quantify the impact on walking behavior. This is possible through tACS, whose beneficial effect on walking behavior (including boosting of beta oscillations in intramuscular coherence) has been recently demonstrated in both neurotypical adults and stroke patients. However, these studies still do not allow for specific roles of alpha and beta oscillations to be delineated because the tACS frequency used was much lower (i.e., individualized calculated gait frequency was used). Thus, we identify a main gap in the literature, which is tACS studies actually stimulating at alpha and beta frequencies during walking. Overall, we conclude that for beta oscillations there is a clear connection to descending drive in the corticospinal tract. The precise relationship between alpha oscillations and CReST remains elusive due to the gaps in the literature identified here. However, better understanding the role of alpha (and beta) oscillations in the motor control of walking can be used to progress and develop rehabilitation strategies for promoting locomotor recovery.
Collapse
Affiliation(s)
- Charalambos C. Charalambous
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, Medical School, University of Nicosia, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), Medical School, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
4
|
Balance Rehabilitation Approach by Bobath and Vojta Methods in Cerebral Palsy: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101481. [PMID: 36291417 PMCID: PMC9600654 DOI: 10.3390/children9101481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
In cerebral palsy (CP) the basis for rehabilitation comes from neuroplasticity. One of the leading therapeutic approaches used in the management of CP is the NDT Bobath therapy and Vojta therapy consists in trying to program the ideal movement patterns for the age. The aim of our research was to analyze, from a functional point of view, the evolution of the biomechanical parameters characterizing the balance, in children with CP. The group of 12 subjects average age of 7 ± 3.28 years. The subject’s evaluation included a functional clinical evaluation by Berg pediatric scale and a biomechanical evaluation performed using the “Stabilometry footboard PoData 2.00” for evaluation the body weight distribution on the foot level. The rehabilitation program was developed based on two methods, NDT Bobath and Vojta. A 90-min physiotherapy session starts with a Vojta therapy activation, for 20 min. Between the two therapies there is a 10-min break, then the session continues with NDT Bobath exercises within the 3 physical exercises proposed for 60 min. 5 days per week, 6 months. The analysis of the data collected before and after the application of the rehabilitation program, regarding the using the Berg scale indicates a progress of 32.35%, (p = 0.0001 < 0.05) and the effect size is large. The evolution of the data that indicate the distribution of body weight at the level of the two lower limbs, at the two moments pre/post, evaluation. For left side a progress of 8.39%, (p = 0.027 < 0.05) but a small effect size of 0.86. For right side a progress of 10.36% (p = 0.027 < 0.05) and also a small effect size of 0.86. Analyzing the results, we find that there is a left-right rebalancing in most patients. The favorable results that were obtained by drawing up a physiotherapy program composed of the combination of the two Vojta and NDT Bobath methods are proof of the fact that both methods are based on the creation of a stimulating peripheral pressure, which, if maintained, generates an extended stereotyped motor response. A pattern of symmetrical muscle contraction is thus created and thus balance and postural control can be achieved. The left-right rebalancing, proven by the percentage distribution analysis of the weight at the lower segmental level, demonstrated that the body alignment approach through the Vojta method on the one hand and the inhibitory facilitating postures/exercises promoted by the NDT Bobath method, allows obtaining a symmetry.
Collapse
|
5
|
Jang SH, Byun DH. Delayed gait recovery by resolution of limb-kinetic apraxia in a chronic hemiparetic stroke patient: A case report. Medicine (Baltimore) 2022; 101:e28711. [PMID: 35089235 PMCID: PMC8797483 DOI: 10.1097/md.0000000000028711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023] Open
Abstract
RATIONALE This paper reports on a chronic hemiparetic stroke patient who showed delayed gait recovery due to resolution of limb-kinetic apraxia (LKA). PATIENT CONCERNS A 49-year-old man underwent comprehensive rehabilitation at a local rehabilitation hospital since 3 weeks after spontaneous intracerebral haemorrhage. However, he could not walk independently because of severe motor weakness in his right leg until 19 months after the onset. DIAGNOSIS At the beginning of rehabilitation at our hospital (19 months after onset), we thought that he had the neurological potential to walk independently because the unaffected (right) corticospinal tract and corticoreticulospinal tract were closely related to the gait potential, representing intact integrities. As a result, we assumed that the severe motor weakness in the right leg was mainly ascribed to LKA. INTERVENTIONS At our hospital, he underwent comprehensive rehabilitation including increased doses of dopaminergic drugs (pramipexole, ropinirole, amantadine, and carbidopa/levodopa). OUTCOMES After 10 days to our hospital, he could walk independently on an even floor with verbal supervision, concurrent with motor recovery of the right leg. After 24 days after hospital admission, he could walk independently on an even floor. LESSONS We believe that the resolution of LKA in his right leg by the administration of adequate doses of dopaminergic drugs was the main reason for the delayed gait recovery in this patient. The results suggest the importance of detecting the neurological potential for gait ability of a stroke patient who cannot walk after the gait recovery phase and the causes of gait inability for individual patients.
Collapse
|
6
|
Ko SH, Kim T, Min JH, Kim M, Ko HY, Shin YI. Corticoreticular Pathway in Post-Stroke Spasticity: A Diffusion Tensor Imaging Study. J Pers Med 2021; 11:jpm11111151. [PMID: 34834503 PMCID: PMC8621009 DOI: 10.3390/jpm11111151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
One of the pathophysiologies of post-stroke spasticity (PSS) is the imbalance of the reticulospinal tract (RST) caused by injury to the corticoreticular pathway (CRP) after stroke. We investigated the relationship between injuries of the CRP and PSS using MR diffusion tensor imaging (DTI). The subjects were divided into spasticity and control groups. We measured the ipsilesional fractional anisotropy (iFA) and contralesional fractional anisotropy (cFA) values on the reticular formation (RF) of the CRP were on the DTI images. We carried out a retrospective analysis of 70 patients with ischemic stroke. The cFA values of CRP in the spasticity group were lower than those in the control group (p = 0.04). In the sub-ROI analysis of CRP, the iFA values of pontine RF were lower than the cFA values in both groups (p < 0.05). The cFA values of medullary RF in the spasticity group were lower than the iFA values within groups, and also lower than the cFA values in the control group (p < 0.05). This results showed the CRP injury and that imbalance of RST caused by CRP injury was associated with PSS. DTI analysis of CRP could provide imaging evidence for the pathophysiology of PSS.
Collapse
Affiliation(s)
- Sung-Hwa Ko
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.-H.K.); (J.H.M.); (M.K.); (H.-Y.K.)
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Taehyung Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Ji Hong Min
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.-H.K.); (J.H.M.); (M.K.); (H.-Y.K.)
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Musu Kim
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.-H.K.); (J.H.M.); (M.K.); (H.-Y.K.)
| | - Hyun-Yoon Ko
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.-H.K.); (J.H.M.); (M.K.); (H.-Y.K.)
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (S.-H.K.); (J.H.M.); (M.K.); (H.-Y.K.)
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.:+82-55-360-4250
| |
Collapse
|
7
|
Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol 2019; 10:1188. [PMID: 31803130 PMCID: PMC6868423 DOI: 10.3389/fneur.2019.01188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that the corticoreticular tract (CRT) has an important role in motor function almost next to the corticospinal tract (CST) in the human brain. Herein, the CRT is reviewed with regard to its anatomy, function, and recovery mechanisms after injury, with particular focus on previous diffusion tensor tractography-based studies. The CRT originates from several cortical areas but mainly from the premotor cortex. It descends through the subcortical white matter anteromedially to the CST with a 6- to 12-mm separation in the anteroposterior direction, then passing through the mesencephalic tegmentum and the pontine and pontomedullary reticular formations. Regarding its motor functions, the CRT appears to be mainly involved in the motor function of proximal joint muscles accounting for ~30–40% of the motor function of these joint muscles. In addition, the CRT is involved in gait function and postural stability. However, further studies that clearly rule out the effects of other motor function-related neural tracts are necessary to clarify the precise portion of the total motor function for which the CRT is responsible. With regard to recovery mechanisms for an injured CRT, three recovery mechanisms were suggested in five previous studies: recovery through the original pathway, recovery through perilesional reorganization, and recovery through the transcallosal pathway. However, each of those studies was single-case reports; therefore, further original studies including a larger number of patients are warranted.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Jun Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
8
|
Jang SH, Kwon HG. Akinetic mutism in a patient with mild traumatic brain injury: A diffusion tensor tractography study. Brain Inj 2017; 31:1159-1163. [DOI: 10.1080/02699052.2017.1288265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea
| |
Collapse
|