1
|
Xu B, Zhang JE, Ye L, Yuan CW. The Role of the ADAMTS18 Gene-Induced Immune Microenvironment in Mouse Kidney Development. Biomedicines 2024; 12:396. [PMID: 38397998 PMCID: PMC10887409 DOI: 10.3390/biomedicines12020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study is to investigate the role of the ADAMTS18 gene in regulating the renal development of mice. PAS staining was used to observe the kidney development of E12.5-E17.5 mice, while immunofluorescence staining and RT-PCR were used to observe the expression of ADAMTS18. Ureteric bud (UB) branches were observed using immunofluorescence staining using the UB marker E-cadherin, and the apoptosis and proliferation of posterior renal mesenchymal cells were analyzed using TUNEL and PH3 fluorescence staining. Flow cytometry was used to analyze the immune cell infiltration, and western blotting (WB) was used to analyze the expression of PD-1/PD-L1 and CTLA-4. As a result, the ADAMTS18 gene expression gradually increased as the kidney continued to mature during embryonic development. Compared with that in the control and vector groups, UB branching was significantly reduced in the ADAMTS18 deletion group (p < 0.05), but that deletion of ADAMTS18 did not affect posterior renal mesenchymal cell proliferation or apoptosis (p > 0.05). Compared with those in the control and vector groups, the proportion of embryonic kidney B cells and the proportion of CD8+ cells were significantly greater after ADAMTS18 was knocked down (p < 0.05), but the difference in neutrophil counts was not significant (p > 0.05). The WB analysis revealed that the PD-1/PD-L1 and CTLA-4 expression was significantly increased after ADAMTS18 was knocked down (p < 0.05). In conclusion, the ADAMTS18 gene may be involved in mice kidney development by regulating the immune microenvironment and activating immune checkpoints. Deletion of the ADAMTS18 gene may be unfavorable for kidney development.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing 100034, China
| | | | | | | |
Collapse
|
2
|
Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies. Rev Physiol Biochem Pharmacol 2023; 184:69-120. [PMID: 35061104 DOI: 10.1007/112_2021_67] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metalloproteinases are a group of proteinases that plays a substantial role in extracellular matrix remodeling and its molecular signaling. Among these metalloproteinases, ADAMs (a disintegrin and metalloproteinases) and ADAM-TSs (ADAMs with thrombospondin domains) have emerged as highly efficient contributors mediating proteolytic processing of various signaling molecules. ADAMs are transmembrane metalloenzymes that facilitate the extracellular domain shedding of membrane-anchored proteins, cytokines, growth factors, ligands, and their receptors and therefore modulate their biological functions. ADAM-TSs are secretory, and soluble extracellular proteinases that mediate the cleavage of non-fibrillar extracellular matrix proteins. ADAMs and ADAM-TSs possess pro-domain, metalloproteinase, disintegrin, and cysteine-rich domains in common, but ADAM-TSs have characteristic thrombospondin motifs instead of the transmembrane domain. Most ADAMs and ADAM-TSs are activated by cleavage of pro-domain via pro-protein convertases at their N-terminus, hence directing them to various signaling pathways. In this article, we are discussing not only the structure and regulation of ADAMs and ADAM-TSs, but also the importance of these metalloproteinases in various human pathophysiological conditions like cardiovascular diseases, colorectal cancer, autoinflammatory diseases (sepsis/rheumatoid arthritis), Alzheimer's disease, proliferative retinopathies, and infectious diseases. Therefore, based on the emerging role of ADAMs and ADAM-TSs in various human pathologies, as summarized in this review, these metalloproteases can be considered as critical therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Integrative Biosciences Center (IBio), Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
4
|
Ren W, Liang L, Li Y, Wei FY, Mu N, Zhang L, He W, Cao Y, Xiong D, Li H. Upregulation of miR‑423 improves autologous vein graft restenosis via targeting ADAMTS‑7. Int J Mol Med 2020; 45:532-542. [PMID: 31894258 PMCID: PMC6984782 DOI: 10.3892/ijmm.2019.4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Coronary artery bypass graft (CABG) is one of the primary methods of treating coronary heart disease (CHD); however, vein graft restenosis is a major limiting factor of the effectiveness of CABG. Emerging evidence has indicated that miR‑423 is associated with vascular diseases. Additionally, upregulation of a disintegrin and metalloproteinase with thrombospondin motifs‑7 (ADAMTS‑7) contributes to neointima formation by promoting the proliferation and migration of vascular smooth muscle cells and inhibiting the proliferation and migration of endothelial cells. The aim of the present study was to examine the effects of miR‑423 target, ADAMTS‑7, on regulating vein graft disease and identify novel biomarkers for use in therapy of vein graft failure (VGF). Aberrant expression of miR‑423 in plasma of patients with CHD prior to and following CABG confirms that miR‑423 may be a suitable target for preventing VGF. Furthermore, a dual‑luciferase reporter gene assay indicated that miR‑423 directly interacted with ADAMTS‑7 and suppressed its expression. Ectopic expression of miR‑423 suppressed ADAMTS‑7, resulting in decreased proliferation and migration rates of human umbilical vein smooth muscle cells by targeting ADAMTS‑7, but resulted in increased proliferation and migration of human umbilical vein endothelial cells in vitro. Overexpression of miR‑423 also enhanced re‑endothelialization and decreased neointimal formation in a rat vein graft model. In conclusion, the results of the present study demonstrated that the miR‑423/ADAMTS‑7 axis may possess potential clinical value for the prevention and treatment of restenosis in patients with CHD following CABG.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Liwen Liang
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Fei-Yu Wei
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Ninghui Mu
- Department of Geriatrics/General Medical Science, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Wei He
- Department of Medical Services, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
5
|
Zhong S, Khalil RA. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol 2019; 164:188-204. [PMID: 30905657 DOI: 10.1016/j.bcp.2019.03.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
A Disintegrin and Metalloproteinase (ADAM) is a family of proteolytic enzymes that possess sheddase function and regulate shedding of membrane-bound proteins, growth factors, cytokines, ligands and receptors. Typically, ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and a characteristic transmembrane domain. Most ADAMs are activated by proprotein convertases, but can also be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C activators. A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) is a family of secreted enzymes closely related to ADAMs. Like ADAMs, ADAMTS members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but they lack a transmembrane domain and instead have characteristic thrombospondin motifs. Activated ADAMs perform several functions and participate in multiple cardiovascular processes including vascular smooth muscle cell proliferation and migration, angiogenesis, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs may also be involved in pathological conditions and cardiovascular diseases such as atherosclerosis, hypertension, aneurysm, coronary artery disease, myocardial infarction and heart failure. Like ADAMs, ADAMTS have a wide-spectrum role in vascular biology and cardiovascular pathophysiology. ADAMs and ADAMTS activity is naturally controlled by endogenous inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), and their activity can also be suppressed by synthetic small molecule inhibitors. ADAMs and ADAMTS can serve as important diagnostic biomarkers and potential therapeutic targets for cardiovascular disorders. Natural and synthetic inhibitors of ADAMs and ADAMTS could be potential therapeutic tools for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng Zhong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Lin Y, Chen H, Wang Y, Jin C, Lin X, Wang C, Lu Y, Chen Z, Wang JA, Xiang M. Association of serum ADAMTS7 levels and genetic variant rs1994016 with acute coronary syndrome in a Chinese population: A case control study. Atherosclerosis 2018; 275:312-318. [PMID: 29980058 DOI: 10.1016/j.atherosclerosis.2018.06.872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Acute coronary syndrome (ACS) is commonly caused by rupture or erosion of coronary atherosclerotic plaques and secondary thrombus formation. Metalloproteinase ADAMTS7 was found to play an important role in atherogenesis. This study aimed to explore the association of serum ADAMTS7 levels and rs1994016 polymorphism at ADAMTS7 locus with ACS in a Chinese population. METHODS 1881 patients who underwent coronary angiography were consecutively recruited. Among them, 426 patients were matched for case-controlled analysis. Serum ADAMTS7 levels were determined through enzyme-linked immunosorbent assay (ELISA) and rs1994016 polymorphism was detected by polymerase chain reaction (PCR). RESULTS Serum ADAMTS7 levels in patients with unstable angina pectoris were much higher than in non-atherosclerotic patients, however, no difference was found among non-atherosclerotic patients, the coronary atherosclerosis subgroup and stable angina pectoris subgroup. A higher serum ADAMTS7 level was found in the ACS group than in the non-ACS group (0.61 ± 0.04 vs. 0.47 ± 0.02 ng/mL, p = 0.002) and serum ADAMTS7 level was found to be an independent risk factor for ACS after adjusting for major confounding factors (OR:2.81, 95% CI:1.33-5.93, p = 0.007). ADAMTS7 rs1994016 CT/TT polymorphism was negatively associated with the risk of ACS (OR:0.40, 95% CI:0.22-0.71, p = 0.002). Meanwhile, crossover analysis revealed that in CT/TT homozygotes, ACS risk was reduced nearly 80% in patients with serum ADAMTS7 levels <0.594 ng/mL (Interaction p = 0.002). CONCLUSIONS Serum level of ADAMTS7 was positively associated and rs1994016 CT/TT genotype was negatively associated with the risk of ACS. Patients with lower serum ADAMTS7 level and rs1994016 CT/TT genotype are less likely to suffer from ACS in a Chinese population.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Chunna Jin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Xiaoping Lin
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Cuncun Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Yi Lu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Zexin Chen
- Cardiovascular Key Lab of Zhejiang Province, China
| | - Jian-An Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cardiovascular Key Lab of Zhejiang Province, China.
| |
Collapse
|
7
|
Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol 2018; 71-72:225-239. [PMID: 29885460 DOI: 10.1016/j.matbio.2018.06.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States.
| |
Collapse
|
8
|
Wu W, Li J, Yu C, Gao Y, Fan S, Ye X, Wang Y, Zheng J. Association of serum ADAMTS-7 levels with left ventricular reverse remodeling after ST-elevation myocardial infarction. Eur J Med Res 2018. [PMID: 29523183 PMCID: PMC5845142 DOI: 10.1186/s40001-018-0305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Left ventricular reverse remodeling (LVRR) in patients with ST-elevation myocardial infarction (STEMI) is associated with a good prognosis. Serum levels of ADAMTS-7 might be used for the prognosis of STEMI. This study aimed to investigate the relationship between serum ADAMTS-7 levels and LVRR. METHODS This was a prospective study of 104 patients with STEMI who underwent revascularization and 63 controls. ADAMTS-7 serum levels were measured on days 1, 3, and 7 and in months 1 and 6 after STEMI. A decrease ≥ 15% of the left ventricular end-systolic volume at 6 months was defined as LVRR. RESULTS The serum levels of ADAMTS-7 in patients with LVRR were lower than those without LVRR (3.84 ± 2.26 vs. 5.02 ± 2.54, P = 0.032) 7 days after STEMI and the difference between day 7 and day 1 (ΔADAMTS-7) was even significantly lower (- 1.31 ± 0.94 vs. - 0.30 ± 0.22, P = 0.021). Multivariate analysis showed that ΔADAMTS-7(day 7 minus day 1) was independently associated with LVRR (OR = - 0.322, 95% CI = - 0.996 to - 0.074, P = 0.028). Receiver operating characteristic (ROC) curve analysis showed that LVRR could be predicted (sensitivity 89%, specificity 82%, and area under the curve 0.896) when ΔADAMTS-7(day 7 minus day 1) was < - 0.39. CONCLUSIONS ΔADAMTS-7(day 7 minus day 1) might be a potential predictive factor for LVRR.
Collapse
Affiliation(s)
- Wenjing Wu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahui Li
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Changan Yu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shuying Fan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaojun Ye
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|