1
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
2
|
Ryabov V, Gombozhapova A, Litviakov N, Ibragimova M, Tsyganov M, Rogovskaya Y, Kzhyshkowska J. Microarray Analysis for Transcriptomic Profiling of Myocardium in Patients with Fatal Myocardial Infarction. Biomedicines 2023; 11:3294. [PMID: 38137515 PMCID: PMC10740899 DOI: 10.3390/biomedicines11123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptomic evidence from human myocardium in myocardial infarction (MI) is still not sufficient. Thus, there is a need for studies on human cardiac samples in relation to the clinical data of patients. The purpose of our pilot study was to investigate the transcriptomic profile of myocardium in the infarct zone, in comparison to the remote myocardium, in patients with fatal MI, via microarray analysis. This study included four patients with fatal MI type 1. We selected histologically verified samples from within the infarct area (n = 4) and remote myocardium (n = 4). The whole transcriptome was evaluated using microarray analysis. Differentially expressed genes (DEGs) clustered in the infarct area and in the remote myocardium allowed their differentiation. We identified a total of 1785 DEGs (8.32%) in the infarct area, including 1692 up-regulated (94.79%) and 93 down-regulated (5.21%) genes. The top 10 up-regulated genes were TRAIL, SUCLA2, NAE1, PDCL3, OSBPL5, FCGR2C, SELE, CEP63, ST3GAL3 and C4orf3. In the infarct area, we found up-regulation of seventeen apoptosis-related genes, eleven necroptosis-related, and six necrosis-related genes. Transcriptome profiling of the myocardium in patients with MI remains a relevant area of research for the formation of new scientific hypotheses and a potential way to increase the translational significance of studies into myocardial infarction.
Collapse
Affiliation(s)
- Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia;
| | - Aleksandra Gombozhapova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia;
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (N.L.); (M.I.); (M.T.)
| | - Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (N.L.); (M.I.); (M.T.)
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia; (N.L.); (M.I.); (M.T.)
| | | | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany;
- Laboratory of Translational and Cellular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Liu ZY, Liu F, Cao Y, Peng SL, Pan HW, Hong XQ, Zheng PF. ACSL1, CH25H, GPCPD1, and PLA2G12A as the potential lipid-related diagnostic biomarkers of acute myocardial infarction. Aging (Albany NY) 2023; 15:1394-1411. [PMID: 36863716 PMCID: PMC10042701 DOI: 10.18632/aging.204542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-RFE screening, four genes (ACSL1, CH25H, GPCPD1, and PLA2G12A) were identified as potential diagnostic biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new targets for lipid therapy of AMI.
Collapse
Affiliation(s)
- Zheng-Yu Liu
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| | - Fen Liu
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410000, China
| | - Yan Cao
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- Department of Emergency, Hunan Provincial People's Hospital, Changsha 410000, China
| | - Shao-Liang Peng
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Data Center, Hunan Provincial People's Hospital, Changsha 410000, China
| | - Hong-Wei Pan
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| | - Xiu-Qin Hong
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410000, China
| | - Peng-Fei Zheng
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| |
Collapse
|
4
|
Tan X, Dai Q, Sun H, Jiang W, Lu S, Wang R, Lv M, Sun X, Lv N, Dai Q. Systematic Bioinformatics Analysis Based on Public and Second-Generation Sequencing Transcriptome Data: A Study on the Diagnostic Value and Potential Mechanisms of Immune-Related Genes in Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:863248. [PMID: 35498008 PMCID: PMC9046674 DOI: 10.3389/fcvm.2022.863248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases worldwide. Advances in genomics have provided new ideas for the development of novel molecular biomarkers of potential clinical value for AMI.
Collapse
Affiliation(s)
- Xiaobing Tan
- Department of Center of Stomatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qingli Dai
- Department of Ultrasound, Dali Bai Autonomous Prefecture People's Hospital, The Third Affiliated Hospital of Dali University, Dali, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenqing Jiang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruxian Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meirong Lv
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianfeng Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Naying Lv
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingyuan Dai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Qingyuan Dai
| |
Collapse
|
5
|
Wang YH, Li CX, Stephenson JM, Marrelli SP, Kou YM, Meng DZ, Wu T. NR4A3 and CCL20 clusters dominate the genetic networks in CD146 + blood cells during acute myocardial infarction in humans. Eur J Med Res 2021; 26:113. [PMID: 34565470 PMCID: PMC8474787 DOI: 10.1186/s40001-021-00586-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND CD146 is a tight junction-associated molecule involved in maintaining endothelial barrier, and balancing immune-inflammation response, in cardiovascular disease. Notably, peripheral CD146+ cells significantly upsurge under vessel dyshomeostasis such as acute myocardial injury (AMI), appearing to be a promising therapeutic target. In this study, with a new view of gene correlation, we aim at deciphering the complex underlying mechanism of CD146+ cells' impact in the development of AMI. METHODS Transcription dataset GSE 66,360 of CD146+ blood cells from clinical subjects was downloaded from NCBI. Pearson networks were constructed and the clustering coefficients were calculated to disclose the differential connectivity genes (DCGs). Analysis of gene connectivity and gene expression were performed to reveal the hub genes and hub gene clusters followed by gene enrichment analysis. RESULTS AND CONCLUSIONS Among the total 23,520 genes, 27 genes out of 126 differential expression genes were identified as DCGs. These DCGs were found in the periphery of the networks under normal condition, but transferred to the functional center after AMI. Moreover, it was revealed that DCGs spontaneously crowded together into two functional models, CCL20 cluster and NR4A3 cluster, influencing the CD146-mediated signaling pathways during the pathology of AMI for the first time.
Collapse
Affiliation(s)
- Yan-Hui Wang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China.
| | - Chen-Xin Li
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China
| | - Jessica M Stephenson
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA
| | - Sean P Marrelli
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA
| | - Yan-Ming Kou
- College of Mathematics and Systems Science, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, China
| | - Da-Zhi Meng
- College of Applied Science, Beijing University of Technology, 100 Pingleyuan, Beijing, 10024, Chaoyang, China.
| | - Ting Wu
- Department of Neurology, University of Texas Health Science Center at Houston, 6431 Fannin street, Houston, TX, 77031, USA.
| |
Collapse
|
6
|
Du Y, Ning JZ. MiR-182 Promotes Ischemia/Reperfusion-Induced Acute Kidney Injury in Rat by Targeting FoxO3. Urol Int 2021; 105:687-696. [PMID: 33965964 DOI: 10.1159/000515649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R) injury (RIRI) is the main cause of acute kidney injury (AKI) in patients. We investigated the role of miR-182 after renal ischemia/reperfusion (I/R) in rat to characterize the microRNA (miRNA) network activated during development and recovery from RIRI. METHODS AND RESULTS 12 h after lethal (45 min) renal ischemia, AKI was verified by renal histology (tubular necrosis and regeneration), blood urea nitrogen level, and renal mRNA expression in Wistar rats. We found that miR-182 markedly increased after renal I/R. In cell hypoxia/reoxygenation model, we found similar upregulation of miR-182. In function gain/loss assay, we confirmed an impaired effect of miR-182 and identified Forkhead box O3 (FoxO3) as a direct downstream target of it. By using miR-182 antagomir, the I/R injury was markedly ameliorated. CONCLUSIONS Our results demonstrate that miR-182 promotes cell apoptosis and I/R injury through directly binding to FoxO3. The present study will provide potential therapeutic targets for renal I/R-induced AKI, and open a new avenue for AKI treatment by manipulating miRNAs levels.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Geng H, Su Y, Huang R, Fan M, Li X, Lu X, Sheng H. Specific protein 1 inhibitor mithramycin A protects cardiomyocytes from myocardial infarction via interacting with PARP. In Vitro Cell Dev Biol Anim 2021; 57:315-323. [PMID: 33580416 DOI: 10.1007/s11626-021-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Specific protein 1 (SP1) might act as a critical transcription regulator in myocardial infarction (MI), but little evidence about its function in regulating cardiac apoptosis, a major cause of MI development, has been revealed. This study tried to investigate the role of SP1 in MI and its interaction with poly-ADP-ribose polymerase (PARP)-1 by using SP1 inhibitor, mithramycin A (mithA). Primary mouse cardiomyocytes and commercial mouse cardiomyocytes were subjected to mithA treatment under hypoxia conditions, while cell viability, Nix promoter activity, and its expression were detected correspondingly. PARP overexpression and knockdown were conducted, respectively, in mithA-treated and SP1-overexpressing cells. Co-immunoprecipitation was used to verify the interaction between PARP and SP1. For in vivo experiments, mithA administration was performed after the injections of adenovirus for PARP overexpression, and then, MI introduction was carried out. Infarct size and lactate dehydrogenase level were measured to assess MI injury. SP1 inhibitor mithA attenuated hypoxia-induced decrease of cell viability and Nix transcriptional activation, which could be inhibited by PARP overexpression. Knockdown of PARP prevented SP1-induced transcription of Nix and cell viability change, and PARP showed direct interaction with SP1. Furthermore, mithA administration reduced MI injuries, while PARP overexpression could suppress the improvement. The cardioprotective role of SP1 inhibitor mithA was demonstrated here expanding the role of SP1 in MI development involving hypoxia-induced cardiac apoptosis. Moreover, PARP acted as a transcriptional coactivator in Nix transcription involving its interaction with SP1.
Collapse
Affiliation(s)
- Haihua Geng
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Yamin Su
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Rong Huang
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Mengkang Fan
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Xiaofei Li
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Xiaochen Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20 Xisi Rd, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
8
|
Han X, Chen X, Han J, Zhong Y, Li Q, An Y. MiR-324/SOCS3 Axis Protects Against Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury and Regulates Myocardial Ischemia via TNF/NF-κB Signaling Pathway. Int Heart J 2020; 61:1258-1269. [PMID: 33191336 DOI: 10.1536/ihj.19-687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We aimed at exploring the function of microRNA-324/cytokine signaling 3 (miR-324/SOCS3) axis in hypoxia/reoxygenation (H/R) -induced cardiomyocyte injury and its underlying mechanism. The differential expression genes were analyzed based on the GSE83500 and GSE48060 datasets from the Gene Expression Omnibus (GEO) database. Then, to conduct the function enrichment analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used. The upstream regulatory microRNAs (miRNAs) of the identified genes were predicted by miRanda, miRWalk, and TargetScan websites. MiR-324 expression was measured with quantitative real-time polymerase chain reaction (qRT-PCR). The target binding of miR-324 and SOCS3 was established by dual-luciferase reporter assay. Cardiomyocyte proliferation was analyzed by cell counting kit-8 (CCK-8) assay, whereas the apoptosis was investigated via flow cytometry. The expression of TNF pathway-related proteins was detected by western blot analysis. SOCS3 was upregulated in patients with myocardial infarction (MI), and function enrichment analyses proved that SOCS3 was enriched in TNF signaling pathway. Moreover, we found that miR-324 was the upstream regulatory miRNA of SOCS3 and negatively regulated SOCS3 expression. MiR-324 was downregulated in cardiomyocytes with H/R-induced injury, inhibiting cell proliferation. In the H/R model, SOCS3 suppresses cardiomyocyte proliferation, which was recovered by miR-324, and induces cell apoptosis, which was repressed by miR-324 via regulating the expression of cleaved caspase-3 and p P38-MAPK. MiR-324 upregulation decreased the protein levels of TNF-α, p-P65, and p-IκBα in cardiomyocytes that suffered from H/R, which was reversed with SOCS3 overexpression. MiR-324/SOCS3 axis could improve the H/R-induced injury of cardiomyocytes via regulating TNF/NF-κB signaling pathway, and this might provide a new therapy strategy for myocardial ischemia.
Collapse
Affiliation(s)
- Xuefu Han
- Department of medicine, Qingdao University.,Department of Cardiology, Weifang People's Hospital
| | - Xi Chen
- Department of Stomatology, Weifang Maternal and Child Health Hospital
| | - Jiaqi Han
- Department of medicine, Qingdao University
| | - Yu Zhong
- Department of Personnel, Weifang Maternal and Child Health Hospital
| | - Qinghua Li
- School of Public Health, Weifang Medical University
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University.,Qingdao University
| |
Collapse
|
9
|
MetaDE-Based Analysis of circRNA Expression Profiles Involved in Gastric Cancer. Dig Dis Sci 2020; 65:2884-2895. [PMID: 31894486 DOI: 10.1007/s10620-019-06014-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) could play carcinogenic roles in gastric cancer (GC) and have potential to be biomarkers for GC early diagnosis, which needs to be further excavated and supported by more evidence. AIMS The study aims to identify more authentic circRNA expression profiles that could function as potential biomarkers in GC. METHODS circRNA expression data in three microarrays were downloaded from Gene Expression Omnibus datasets. A systematic meta-analysis based on an integrated dataset pre-processed from the three microarrays was conducted to identify a panel of differentially expressed circRNAs (DEcircs) by using the metaDE package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes term enrichment were used to note the corresponding functions of DEcircs. Quantitative real-time polymerase chain reaction was applied to verify the DEcircs expression in cancer tissues and adjacent paracancerous tissues. A GC risk-related circRNAs-miRNAs-mRNAs network was further constructed and analyzed. RESULTS MetaDE analysis suggested 64 DEcircs between cancer tissues and adjacent normal tissues. GO and KEGG analysis showed that the parental genes of these DEcircs were mainly associated with histone methylation, Wnt signalosome and histone methylation activity. Hsa_circ_0005927 and hsa_circ_0067934 were verified in GC tissues, and a GC risk-related network was constructed. CONCLUSION MetaDE-based circRNA expression profiles revealed a series of potential biomarkers involved in GC. Two circRNAs, hsa_circ_0005927 and hsa_circ_0067934, could be more authentic biomarkers for GC screening. The GC risk-related network of hsa_circ_0005927/hsa_circ_0067934 and their downstream targets will provide new genetic insights for GC research.
Collapse
|
10
|
Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|
11
|
Osmak G, Baulina N, Koshkin P, Favorova O. Collapsing the list of myocardial infarction-related differentially expressed genes into a diagnostic signature. J Transl Med 2020; 18:231. [PMID: 32517814 PMCID: PMC7285786 DOI: 10.1186/s12967-020-02400-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most severe manifestations of coronary artery disease (CAD) and the leading cause of death from non-infectious diseases worldwide. It is known that the central component of CAD pathogenesis is a chronic vascular inflammation. However, the mechanisms underlying the changes that occur in T, B and NK lymphocytes, monocytes and other immune cells during CAD and MI are still poorly understood. One of those pathogenic mechanisms might be the dysregulation of intracellular signaling pathways in the immune cells. METHODS In the present study we performed a transcriptome profiling in peripheral blood mononuclear cells of MI patients and controls. The machine learning algorithm was then used to search for MI-associated signatures, that could reflect the dysregulation of intracellular signaling pathways. RESULTS The genes ADAP2, KLRC1, MIR21, PDGFD and CD14 were identified as the most important signatures for the classification model with L1-norm penalty function. The classifier output quality was equal to 0.911 by Receiver Operating Characteristic metric on test data. These results were validated on two independent open GEO datasets. Identified MI-associated signatures can be further assisted in MI diagnosis and/or prognosis. CONCLUSIONS Thus, our study presents a pipeline for collapsing the list of differential expressed genes, identified by high-throughput techniques, in order to define disease-associated diagnostic signatures.
Collapse
Affiliation(s)
- German Osmak
- National Medical Research Center for Cardiology, Moscow, 121552, Russia.
| | - Natalia Baulina
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Philipp Koshkin
- National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Olga Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
12
|
Li M, Chen F, Zhang Y, Xiong Y, Li Q, Huang H. Identification of Post-myocardial Infarction Blood Expression Signatures Using Multiple Feature Selection Strategies. Front Physiol 2020; 11:483. [PMID: 32581823 PMCID: PMC7287215 DOI: 10.3389/fphys.2020.00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a type of serious heart attack in which the blood flow to the heart is suddenly interrupted, resulting in injury to the heart muscles due to a lack of oxygen supply. Although clinical diagnosis methods can be used to identify the occurrence of MI, using the changes of molecular markers or characteristic molecules in blood to characterize the early phase and later trend of MI will help us choose a more reasonable treatment plan. Previously, comparative transcriptome studies focused on finding differentially expressed genes between MI patients and healthy people. However, signature molecules altered in different phases of MI have not been well excavated. We developed a set of computational approaches integrating multiple machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), and support vector machine (SVM), to identify gene expression characteristics on different phases of MI. 134 genes were determined to serve as features for building optimal SVM classifiers to distinguish acute MI and post-MI. Subsequently, functional enrichment analyses followed by protein-protein interaction analysis on 134 genes identified several hub genes (IL1R1, TLR2, and TLR4) associated with progression of MI, which can be used as new diagnostic molecules for MI.
Collapse
Affiliation(s)
- Ming Li
- Department of Cardiology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Fuli Chen
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yaling Zhang
- Department of Nephrology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
13
|
MiRNA-Mediated Mechanisms of Cardiac Protection in Ischemic and Remote Ischemic Preconditioning-A Qualitative Systematic Review. Shock 2020; 51:44-51. [PMID: 29642230 DOI: 10.1097/shk.0000000000001156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ischemic preconditioning (IPC) and remote ischemic preconditioning (RIPC) protect myocardial tissue against subsequent ischemia and reperfusion injury (IRI) and have a high potential to improve patient outcome. The mediators and mechanisms of protection through IPC and RIPC remain largely unknown, but micro-RNAs (miRNAs) are promising candidates. METHODS Systematic review of Medline and Embase databases for biomedical scientific literature. RESULTS A total of 26 relevant publications (21 full-text original articles and 5 conference abstracts) were identified, 8 describing cell culture experiments, 14 animal experiments, and 4 randomized clinical trials in humans. Most commonly reported miRNAs with differential expression between preconditioned and control groups include miR-1, miR-21, and miR-144. Experimental designs and procedures differ widely, thereby limiting the potential to compare results between studies. Two of the four RCTs did not find any differentially expressed miRNAs. CONCLUSIONS Results from RCTs should feed back into basic research and focused studies confirming or rejecting hypotheses generated by these RCTs are needed.
Collapse
|
14
|
Metabolic Disturbances Identified in Plasma Samples from ST-Segment Elevation Myocardial Infarction Patients. DISEASE MARKERS 2019; 2019:7676189. [PMID: 31354891 PMCID: PMC6636502 DOI: 10.1155/2019/7676189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most severe form of myocardial infarction (MI) and the main contributor to morbidity and mortality caused by MI worldwide. Frequently, STEMI is caused by complete and persistent occlusion of a coronary artery by a blood clot, which promotes heart damage. STEMI impairment triggers changes in gene transcription, protein expression, and metabolite concentrations, which grants a biosignature to the heart dysfunction. There is a major interest in identifying novel biomarkers that could improve the diagnosis of STEMI. In this study, the phenotypic characterization of STEMI patients (n = 15) and healthy individuals (n = 19) was performed, using a target metabolomics approach. Plasma samples were analyzed by UPLC-MS/MS (ultra-high-performance liquid chromatography-tandem mass spectrometry) and FIA-MS (MS-based flow injection analysis). The goal was to identify novel plasma biomarkers and metabolic signatures underlying STEMI. Concentrations of phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, and biogenic amines were altered in STEMI patients in relation to healthy subjects. Also, after multivariate analysis, it was possible to identify alterations in the glycerophospholipids, alpha-linolenic acid, and sphingolipid metabolisms in STEMI patients.
Collapse
|
15
|
Thunders M, Holley A, Harding S, Stockwell P, Larsen P. Using NGS-methylation profiling to understand the molecular pathogenesis of young MI patients who have subsequent cardiac events. Epigenetics 2019; 14:536-544. [PMID: 30971167 DOI: 10.1080/15592294.2019.1605815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, ischaemic heart disease is a major contributor to premature morbidity and mortality. A significant number of young Myocardial Infarction (MI) patients (aged <55 y) have subsequent cardiac events within a year of their index event. This study used Next Generation Sequencing (NGS) methylation to understand the pathogenesis in this subset of young MI patients, comparing them to a cohort of patients without recurrent events. Cases and controls were matched for age, gender, ethnicity, and comorbidities. Differential methylation analyses were performed on Reduced Representation Bisulphite Sequencing (RRBS) data. Across the group and within case-control pairs' variation were analysed. Pairwise comparisons across each matched case-control pair resulted in a list of genes that were consistently significantly differentially methylated between all 16 matched pairs. This gene list was input into pathway analysis databases. Of particular relevance to cardiac pathology the following pathways were identified as over-represented in the patients with recurrent events; cell adhesion, transcription regulation and cardiac electrical conduction, specifically relating to calcium channel activity. This study looked at methylation differences between two populations of young MI patients. There were significantly different methylation profiles between the two groups studied; key pathways were identified as specifically affected in the patients with recurrent cardiac events. Matched pairwise comparisons and detailed interpretations of DNA methylation data may help to elucidate complex pathogeneses within and between clinical subtypes. Further analysis will determine whether these epigenomic differences can be useful as predictive biomarkers of clinical progression.
Collapse
Affiliation(s)
- Michelle Thunders
- a Department of Pathology (UOW) , University of Otago , Wellington , New Zealand
| | - Ana Holley
- b Wellington Cardiovascular Research Group, University of Otago , Willington , New Zealand
| | - Scott Harding
- c Department of Cardiology , Wellington Cardiovascular Research Group , New Zealand
| | - Peter Stockwell
- d Department of Biochemistry , University of Otago , Dunedin , New Zealand
| | - Peter Larsen
- b Wellington Cardiovascular Research Group, University of Otago , Willington , New Zealand
| |
Collapse
|
16
|
Liu Z, Wang H, Hou G, Cao H, Zhao Y, Yang B. Notoginsenoside R1 protects oxygen and glucose deprivation‐induced injury by upregulation of miR‐21 in cardiomyocytes. J Cell Biochem 2018; 120:9181-9192. [PMID: 30552708 DOI: 10.1002/jcb.28194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zengjia Liu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University Jining Shandong China
- Forensic Science Center of Jining Medical University Jining Shandong China
| | - Haiyang Wang
- Department of Cardiology Qingdao Municipal Hospital Qingdao Shandong China
| | - Guoliang Hou
- Department of Cardiovascular Medicine Tengzhou Central People's Hospital Tengzhou Shandong China
| | - Honglei Cao
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| | - Yan Zhao
- Department of Pain Treatment Jining No. 1 People's Hospital Jining Shandong China
| | - Baofa Yang
- Department of Cardiology Jining No. 1 People's Hospital Jining Shandong China
| |
Collapse
|
17
|
Zhu J, Gu H, Lv X, Yuan C, Ni P, Liu F. LINC-PINT Activates the Mitogen-Activated Protein Kinase Pathway to Promote Acute Myocardial Infarction by Regulating miR-208a-3p. Circ J 2018; 82:2783-2792. [DOI: 10.1253/circj.cj-18-0396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianzhong Zhu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University
- Department of Cardiology, The First People’s Hospital of Kunshan
| | - Huimin Gu
- Department of Cardiology, The First People’s Hospital of Kunshan
| | - Xiaolei Lv
- Department of Cardiology, The First People’s Hospital of Kunshan
| | - Chunying Yuan
- Department of Anesthesiology, Traditional Chinese Medicine of Kunshan
| | - Ping Ni
- Department of Cardiology, The First People’s Hospital of Kunshan
| | - Feng Liu
- Department of Cardiology, Suzhou Kowloon Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
18
|
Altara R, Zouein FA, Brandão RD, Bajestani SN, Cataliotti A, Booz GW. In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Front Cardiovasc Med 2018; 5:11. [PMID: 29556499 PMCID: PMC5850854 DOI: 10.3389/fcvm.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Standard therapies for heart failure with preserved ejection fraction (HFpEF) have been unsuccessful, demonstrating that the contribution of the underlying diastolic dysfunction pathophysiology differs from that of systolic dysfunction in heart failure and currently is far from being understood. Complicating the investigation of HFpEF is the contribution of several comorbidities. Here, we selected three established rat models of diastolic dysfunction defined by three major risk factors associated with HFpEF and researched their commonalities and differences. The top differentially expressed genes in the left ventricle of Dahl salt sensitive (Dahl/SS), spontaneous hypertensive heart failure (SHHF), and diabetes 1 induced HFpEF models were derived from published data in Gene Expression Omnibus and used for a comprehensive interpretation of the underlying pathophysiological context of each model. The diversity of the underlying transcriptomic of the heart of each model is clearly observed by the different panel of top regulated genes: the diabetic model has 20 genes in common with the Dahl/SS and 15 with the SHHF models. Advanced analytics performed in Ingenuity Pathway Analysis (IPA®) revealed that Dahl/SS heart tissue transcripts triggered by upstream regulators lead to dilated cardiomyopathy, hypertrophy of heart, arrhythmia, and failure of heart. In the heart of SHHF, a total of 26 genes were closely linked to cardiovascular disease including cardiotoxicity, pericarditis, ST-elevated myocardial infarction, and dilated cardiomyopathy. IPA Upstream Regulator analyses revealed that protection of cardiomyocytes is hampered by inhibition of the ERBB2 plasma membrane-bound receptor tyrosine kinases. Cardioprotective markers such as natriuretic peptide A (NPPA), heat shock 27 kDa protein 1 (HSPB1), and angiogenin (ANG) were upregulated in the diabetes 1 induced model; however, the model showed a different underlying mechanism with a majority of the regulated genes involved in metabolic disorders. In conclusion, our findings suggest that multiple mechanisms may contribute to diastolic dysfunction and HFpEF, and thus drug therapies may need to be guided more by phenotypic characteristics of the cardiac remodeling events than by the underlying molecular processes.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fouad A Zouein
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Rita Dias Brandão
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Saeed N Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|