1
|
Arnau‐Soler A, Tremblay BL, Sun Y, Madore A, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben‐Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee Y, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025; 80:106-131. [PMID: 39698764 PMCID: PMC11724255 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau‐Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Bénédicte L. Tremblay
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Anne‐Marie Madore
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Mathieu Simard
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Eiwegger
- Translational Medicine Program, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
- Department of Immunology, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Department of Pediatric and Adolescent MedicineUniversity Hospital St. PöltenSt. PöltenAustria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick ChildrenThe University of TorontoTorontoOntarioCanada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of ManitobaChildren's Hospital Research InstituteWinnipegManitobaCanada
| | - Edmond S. Chan
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kari Nadeau
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vanitha Sampath
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bruce D. Mazer
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Susan Elliott
- Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | | | - Lianne Soller
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew Sandford
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical ImmunologyCentre Hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Department of Medicine, Service of Allergy and Clinical ImmunologyCentre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Jennie Hui
- School of Population HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Bethany F. Wilken
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | | | - Adrienn Bourkas
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Denitsa Vasileva
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Ann Clarke
- Department of Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecineUniversité LavalQuebecCanada
| | - Moshe Ben‐Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's HospitalMcGill University Health CentreMontréalQuebecCanada
| | - David Martino
- Wal‐Yan Respiratory Research CentreTelethon Kids InstitutePerthAustralia
| | - Denise Daley
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Catherine Laprise
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Yuka Asai
- Division of Dermatology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
2
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuza Nazmul
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Michiko K Oyoshi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Brahim Errahmani M, Aichi M, Menaa M. Discriminant analysis and logistic regression on genetic history and environmental factors in children with asthma. Minerva Pediatr (Torino) 2024; 76:236-244. [PMID: 33845560 DOI: 10.23736/s2724-5276.21.06042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Asthma is known to be related to genetic and environmental factors, we aimed to identify the predictors discriminating between children with asthma and a control group in order to build typical profiles of these children. METHODS A multidimensional analysis covered children (58 with asthma and 217 as control group), under 17 years of age, involving environmental variables and medical history of these children and their families. RESULTS Chi-square tests highlighted significant links between variables as rhinitis and conjunctivitis (P<0.001). The results showed, in group of asthmatic children, significant high frequencies of allergies, mainly seasonal (P<0.001), rhinitis, family history more present in mothers (P=0.002) and in maternal aunts and uncles (P<0.02). Allergies were mostly present in mothers of asthmatic children (P=0.03). Children whose father, mother or both had asthma were significantly more numerous in asthmatic group (P=0.0007). A multiple correspondence analysis (MCA) identified two typical profiles of children, a first group of asthmatic children with positive modalities of family history, medical and environmental factors, a second, the control group (nA, non-asthmatic children), with essentially negative modalities of the variables. Logistic regression (LR) resulted in a final model which retained four significant predictors, rhinitis (P=0.01), atopic dermatitis (P=0.04), mother antecedents (P=0.03) and paternal uncle antecedents (P=0.008) with a globally appreciable predictive value (82%) of the Hosmer-Lemeshow Test. CONCLUSIONS These results allowed the drafting of a typical profile quantifying through a function of a few predictors, the variation of the probability for a child to develop an asthma.
Collapse
Affiliation(s)
- Mohamed Brahim Errahmani
- Department of Chemistry, Faculty of Science, Blida1 University, Blida, Algeria -
- Department of Cellular Biology, Faculty of Biological Sciences, Blida1 University, Blida, Algeria -
| | - Mériem Aichi
- Department of Cellular Biology, Faculty of Biological Sciences, Blida1 University, Blida, Algeria
| | - Mahdia Menaa
- Department of Cellular Biology, Faculty of Biological Sciences, Blida1 University, Blida, Algeria
| |
Collapse
|
4
|
Devonshire A, Gautam Y, Johansson E, Mersha TB. Multi-omics profiling approach in food allergy. World Allergy Organ J 2023; 16:100777. [PMID: 37214173 PMCID: PMC10199264 DOI: 10.1016/j.waojou.2023.100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
The prevalence of food allergy (FA) among children is increasing, affecting nearly 8% of children, and FA is the most common cause of anaphylaxis and anaphylaxis-related emergency department visits in children. Importantly, FA is a complex, multi-system, multifactorial disease mediated by food-specific immunoglobulin E (IgE) and type 2 immune responses and involving environmental and genetic factors and gene-environment interactions. Early exposure to external and internal environmental factors largely influences the development of immune responses to allergens. Genetic factors and gene-environment interactions have established roles in the FA pathophysiology. To improve diagnosis and identification of FA therapeutic targets, high-throughput omics approaches have emerged and been applied over the past decades to screen for potential FA biomarkers, such as genes, transcripts, proteins, and metabolites. In this article, we provide an overview of the current status of FA omics studies, namely genomic, transcriptomic, epigenomic, proteomic, exposomic, and metabolomic. The current development of multi-omics integration of FA studies is also briefly discussed. As individual omics technologies only provide limited information on the multi-system biological processes of FA, integration of population-based multi-omics data and clinical data may lead to robust biomarker discovery that could translate into advances in disease management and clinical care and ultimately lead to precision medicine approaches.
Collapse
Affiliation(s)
- Ashley Devonshire
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yadu Gautam
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Mezzavilla M, Cocca M, Maisano Delser P, Badii R, Abbaszadeh F, Hadi KA, Giorgia G, Gasparini P. Ancestry-related distribution of Runs of homozygosity and functional variants in Qatari population. BMC Genom Data 2022; 23:73. [PMID: 36131251 PMCID: PMC9490902 DOI: 10.1186/s12863-022-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Describing how genetic history shapes the pattern of medically relevant variants could improve the understanding of how specific loci interact with each other and affect diseases and traits prevalence. The Qatari population is characterized by a complex history of admixture and substructure, and the study of its population genomic features would provide valuable insights into the genetic landscape of functional variants. Here, we analyzed the genomic variation of 186 newly-genotyped healthy individuals from the Qatari peninsula. Results We discovered an intricate genetic structure using ancestry related analyses. In particular, the presence of three different clusters, Cluster 1, Cluster 2 and Cluster 3 (with Near Eastern, South Asian and African ancestry, respectively), was detected with an additional fourth one (Cluster 4) with East Asian ancestry. These subpopulations show differences in the distribution of runs of homozygosity (ROH) and admixture events in the past, ranging from 40 to 5 generations ago. This complex genetic history led to a peculiar pattern of functional markers under positive selection, differentiated in shared signals and private signals. Interestingly we found several signatures of shared selection on SNPs in the FADS2 gene, hinting at a possible common evolutionary link to dietary intake. Among the private signals, we found enrichment for markers associated with HDL and LDL for Cluster 1(Near Eastern ancestry) and Cluster 3 (South Asian ancestry) and height and blood traits for Cluster 2 (African ancestry). The differences in genetic history among these populations also resulted in the different frequency distribution of putative loss of function variants. For example, homozygous carriers for rs2884737, a variant linked to an anticoagulant drug (warfarin) response, are mainly represented by individuals with predominant Bedouin ancestry (risk allele frequency G at 0.48). Conclusions We provided a detailed catalogue of the different ancestral pattern in the Qatari population highlighting differences and similarities in the distribution of selected variants and putative loss of functions. Finally, these results would provide useful guidance for assessing genetic risk factors linked to consanguinity and genetic ancestry.
Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01087-1.
Collapse
|
6
|
Jiao L, Su CW, Cao T, Zheng S, Walker WA, Shi HN. Maternal Influences and Intervention Strategies on the Development of Food Allergy in Offspring. Front Immunol 2022; 13:817062. [PMID: 35281070 PMCID: PMC8904425 DOI: 10.3389/fimmu.2022.817062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergies and other immune-mediated diseases have become serious health concerns amongst infants and children in developed and developing countries. The absence of available cures limits disease management to allergen avoidance and symptomatic treatments. Research has suggested that the presence of maternal food allergies may expose the offspring to genetic predisposition, making them more susceptible to allergen sensitization. The following review has focused on epidemiologic studies regarding maternal influences of proneness to develop food allergy in offspring. The search strategy was "food allergy OR maternal effects OR offspring OR prevention". A systematically search from PubMed/MEDLINE, Science Direct and Google Scholar was conducted. Specifically, it discussed the effects of maternal immunity, microbiota, breastfeeding, genotype and allergy exposure on the development of food allergy in offspring. In addition, several commonly utilized prenatal and postpartum strategies to reduce food allergy proneness were presented, including early diagnosis of high-risk infants and various dietary interventions.
Collapse
Affiliation(s)
- Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo, China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Shasha Zheng
- Department of Nutrition, California Baptist University, Riverside, CA, United States
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
7
|
Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organ J 2021; 14:100591. [PMID: 34820047 PMCID: PMC8593659 DOI: 10.1016/j.waojou.2021.100591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Among non-communicable diseases, the prevalence of allergic diseases has increased significantly in the new millennium. The increase of allergic diseases is linked to the changing environment of infants. Methods This narrative review summarizes the discussions and conclusions from the 8th Human Milk Workshop. Information from the fields of pediatrics, epidemiology, biology, microbiology, and immunology are summarized to establish a framework describing potential avenues for the prevention of allergic diseases in the future. Results Several environmental circumstances are linked to the development of allergic diseases. While cesarean section is increasing the risk of allergies, early childhood exposure to a farm environment has a protective effect. From their analysis, nutritive and non-nutritive factors influencing the allergy risk in later life have been identified. The effect of breastfeeding on food allergy development is non-univocal. Human milk components including immunoglobulins, cytokines, and prebiotics have been indicated as important for allergy prevention. Conclusion Many factors linked to the western lifestyle have been associated with the development of allergic diseases. This suggests several theories that may serve as a basis for new protective interventions. While it is indubitable that mother's milk protects from infectious diseases, its role in the prevention of allergic diseases is to be elucidated.
Collapse
|
8
|
Warrington NM, Hwang LD, Nivard MG, Evans DM. Estimating direct and indirect genetic effects on offspring phenotypes using genome-wide summary results data. Nat Commun 2021; 12:5420. [PMID: 34521848 PMCID: PMC8440517 DOI: 10.1038/s41467-021-25723-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/26/2021] [Indexed: 01/12/2023] Open
Abstract
Estimation of direct and indirect (i.e. parental and/or sibling) genetic effects on phenotypes is becoming increasingly important. We compare several multivariate methods that utilize summary results statistics from genome-wide association studies to determine how well they estimate direct and indirect genetic effects. Using data from the UK Biobank, we contrast point estimates and standard errors at individual loci compared to those obtained using individual level data. We show that Genomic structural equation modelling (SEM) outperforms the other methods in accurately estimating conditional genetic effects and their standard errors. We apply Genomic SEM to fertility data in the UK Biobank and partition the genetic effect into female and male fertility and a sibling specific effect. We identify a novel locus for fertility and genetic correlations between fertility and educational attainment, risk taking behaviour, autism and subjective well-being. We recommend Genomic SEM be used to partition genetic effects into direct and indirect components when using summary results from genome-wide association studies.
Collapse
Affiliation(s)
- Nicole M Warrington
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Liang-Dar Hwang
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michel G Nivard
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - David M Evans
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Eapen AA, Kim H. The Phenotype of the Food-Allergic Patient. Immunol Allergy Clin North Am 2021; 41:165-175. [PMID: 33863477 DOI: 10.1016/j.iac.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food allergy's increasing prevalence across the globe has initiated research into risk factors associated with the disease and coexistence with other allergic diseases. Longitudinal birth cohorts have identified food allergy phenotypes of patients based on genetic background, racial diversity, and environmental factors. Identifying food sensitization patterns and coexistence of other allergic diseases allows physicians to provide appropriate care for food allergy and personalized anticipatory guidance for the appearance of other allergic diseases. The authors seek to detail key findings of 4 longitudinal allergy birth cohorts that investigate food allergy and other allergic diseases to further characterize food allergy phenotypes.
Collapse
Affiliation(s)
- Amy A Eapen
- Division of Allergy and Clinical Immunology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, USA.
| | - Haejin Kim
- Division of Allergy and Clinical Immunology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Venter C, Palumbo MP, Sauder KA, Glueck DH, Liu AH, Yang IV, Ben-Abdallah M, Fleischer DM, Dabelea D. Incidence and timing of offspring asthma, wheeze, allergic rhinitis, atopic dermatitis, and food allergy and association with maternal history of asthma and allergic rhinitis. World Allergy Organ J 2021; 14:100526. [PMID: 33767802 PMCID: PMC7957150 DOI: 10.1016/j.waojou.2021.100526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background Studying the developmental precursors of allergy may help explain the mechanisms (or etiology) of allergic disease. We studied childhood respiratory and allergic diseases in a pre-birth cohort from the United States. Objective We assessed the associations between maternal history of asthma and the development of respiratory and allergic diseases in offspring. We also assessed associations with maternal history of allergic rhinitis. Methods Maternal history of asthma and allergic rhinitis was self-reported during early pregnancy. Offspring respiratory and allergy information was obtained from electronic medical records. Adjusted Cox proportional hazard models assessed the associations between maternal history of asthma and development of respiratory and allergic diseases in the offspring up to 8 years. A similar approach was used for maternal history of allergic rhinitis. Results Children born to women with a history of asthma had a 77% greater risk of developing asthma, a 45% greater risk of atopic dermatitis/eczema, and a 65% greater risk of wheeze (all p < 0.01), but no significantly increased risk of allergic rhinitis or food allergies, compared to children born to women with no history of asthma. Maternal history of allergic rhinitis was not associated with any child allergy outcome, and maternal history of both asthma and allergic rhinitis was associated with child atopic dermatitis/eczema only. Conclusions Maternal history of asthma was significantly associated with offspring respiratory and allergic diagnoses. The association between maternal history of asthma and offspring asthma and atopic dermatitis is a novel finding. Our findings may guide physicians who counsel families with a history of maternal asthma and allergic rhinitis about their child's risk of developing respiratory and allergic diseases.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Children's Hospital Colorado, 13123 East 16th Avenue, B518, Aurora, 80045, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA
| | - Michaela P Palumbo
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, 12474 E. 19th Avenue, Mail Stop F426, Aurora, 80045, Colorado, USA
| | - Katherine A Sauder
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, 12474 E. 19th Avenue, Mail Stop F426, Aurora, 80045, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, Medicine-Bioinformatics, University of Colorado, 12605 E. 16th Ave, Aurora, 80045, Colorado, USA
| | - Deborah H Glueck
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, 12474 E. 19th Avenue, Mail Stop F426, Aurora, 80045, Colorado, USA
| | - Andrew H Liu
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, Medicine-Bioinformatics, University of Colorado, 12605 E. 16th Ave, Aurora, 80045, Colorado, USA.,Department of Medicine, University of Colorado School of Medicine, University of Colorado, 12605 E. 16th Ave, Aurora, 80045, Colorado, USA
| | - Miriam Ben-Abdallah
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA
| | - David M Fleischer
- Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Children's Hospital Colorado, 13123 East 16th Avenue, B518, Aurora, 80045, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado
- 13123 East 16th Avenue, Box B518
- Anschutz Medical Campus
- Aurora, 80045, Colorado, USA.,Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, 12474 E. 19th Avenue, Mail Stop F426, Aurora, 80045, Colorado, USA.,Department of Epidemiology, Colorado School of Public Health, Medicine-Bioinformatics, University of Colorado, 12605 E. 16th Ave, Aurora, 80045, Colorado, USA
| |
Collapse
|
11
|
Current insights into the genetics of food allergy. J Allergy Clin Immunol 2021; 147:15-28. [PMID: 33436162 DOI: 10.1016/j.jaci.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Food allergy (FA), a growing public health burden in the United States, and familial aggregation studies support strong roles for both genes and environment in FA risk. Deepening our understanding of the molecular and cellular mechanisms driving FAs is paramount to improving its prevention, diagnosis, and clinical management. In this review, we document lessons learned from the genetics of FA that have aided our understanding of these mechanisms. Although current genetic association studies suffer from low power, heterogeneity in definition of FA, and difficulty in our ability to truly disentangle FA from food sensitization (FS) and general atopy genetics, they reveal a set of genetic loci, genes, and variants that continue to implicate the importance of barrier and immune function genes across the atopic march, and FA in particular. The largest reported effects on FA are from MALT1 (odds ratio, 10.99), FLG (average odds ratio, ∼2.9), and HLA (average odds ratio, ∼2.03). The biggest challenge in the field of FA genetics is to elucidate the specific mechanism of action on FA risk and pathogenesis for these loci, and integrative approaches including genetics/genomics with transcriptomics, proteomics, and metabolomics will be critical next steps to translating these genetic insights into practice.
Collapse
|
12
|
The Utility of Resolving Asthma Molecular Signatures Using Tissue-Specific Transcriptome Data. G3-GENES GENOMES GENETICS 2020; 10:4049-4062. [PMID: 32900903 PMCID: PMC7642926 DOI: 10.1534/g3.120.401718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An integrative analysis focused on multi-tissue transcriptomics has not been done for asthma. Tissue-specific DEGs remain undetected in many multi-tissue analyses, which influences identification of disease-relevant pathways and potential drug candidates. Transcriptome data from 609 cases and 196 controls, generated using airway epithelium, bronchial, nasal, airway macrophages, distal lung fibroblasts, proximal lung fibroblasts, CD4+ lymphocytes, CD8+ lymphocytes from whole blood and induced sputum samples, were retrieved from Gene Expression Omnibus (GEO). Differentially regulated asthma-relevant genes identified from each sample type were used to identify (a) tissue-specific and tissue-shared asthma pathways, (b) their connection to GWAS-identified disease genes to identify candidate tissue for functional studies, (c) to select surrogate sample for invasive tissues, and finally (d) to identify potential drug candidates via connectivity map analysis. We found that inter-tissue similarity in gene expression was more pronounced at pathway/functional level than at gene level with highest similarity between bronchial epithelial cells and lung fibroblasts, and lowest between airway epithelium and whole blood samples. Although public-domain gene expression data are limited by inadequately annotated per-sample demographic and clinical information which limited the analysis, our tissue-resolved analysis clearly demonstrated relative importance of unique and shared asthma pathways, At the pathway level, IL-1b signaling and ERK signaling were significant in many tissue types, while Insulin-like growth factor and TGF-beta signaling were relevant in only airway epithelial tissue. IL-12 (in macrophages) and Immunoglobulin signaling (in lymphocytes) and chemokines (in nasal epithelium) were the highest expressed pathways. Overall, the IL-1 signaling genes (inflammatory) were relevant in the airway compartment, while pro-Th2 genes including IL-13 and STAT6 were more relevant in fibroblasts, lymphocytes, macrophages and bronchial biopsies. These genes were also associated with asthma in the GWAS catalog. Support Vector Machine showed that DEGs based on macrophages and epithelial cells have the highest and lowest discriminatory accuracy, respectively. Drug (entinostat, BMS-345541) and genetic perturbagens (KLF6, BCL10, INFB1 and BAMBI) negatively connected to disease at multi-tissue level could potentially repurposed for treating asthma. Collectively, our study indicates that the DEGs, perturbagens and disease are connected differentially depending on tissue/cell types. While most of the existing literature describes asthma transcriptome data from individual sample types, the present work demonstrates the utility of multi-tissue transcriptome data. Future studies should focus on collecting transcriptomic data from multiple tissues, age and race groups, genetic background, disease subtypes and on the availability of better-annotated data in the public domain.
Collapse
|
13
|
Gemechu SD, van Vliet CM, Win AK, Figueiredo JC, Le Marchand L, Gallinger S, Newcomb PA, Hopper JL, Lindor NM, Jenkins MA, Dowty JG. Do the risks of Lynch syndrome-related cancers depend on the parent of origin of the mutation? Fam Cancer 2020; 19:215-222. [PMID: 32107660 PMCID: PMC7410789 DOI: 10.1007/s10689-020-00167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 01/07/2023]
Abstract
Individuals who carry pathogenic mutations in DNA mismatch repair (MMR) genes have high risks of cancer, and small studies have suggested that these risks depend on the sex of the parent from whom the mutation was inherited. We have conducted the first large study of such a parent-of-origin effect (POE). Our study was based on all MMR gene mutation carriers and their relatives in the Colon Cancer Family Registry, comprising 18,226 people. The POE was estimated as a hazard ratio (HR) using a segregation analysis approach that adjusted for ascertainment. HR = 1 corresponds to no POE and HR > 1 corresponds to higher risks for maternal mutations. For all MMR genes combined, the estimated POE HRs were 1.02 (95% confidence interval (CI) 0.75-1.39, p = 0.9) for male colorectal cancer, 1.12 (95% CI 0.81-1.54, p = 0.5) for female colorectal cancer and 0.84 (95% CI 0.52-1.36, p = 0.5) for endometrial cancer. Separate results for each MMR gene were similar. Therefore, despite being well-powered, our study did not find any evidence that cancer risks for MMR gene mutation carriers depend on the parent-of-origin of the mutation. Based on current evidence, we do not recommend that POEs be incorporated into the clinical guidelines or advice for such carriers.
Collapse
Affiliation(s)
- Shimelis Dejene Gemechu
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Christine M van Vliet
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Steven Gallinger
- Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clin Rev Allergy Immunol 2020; 60:200-219. [PMID: 32378146 DOI: 10.1007/s12016-020-08787-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic diseases are highly complex with respect to pathogenesis, inflammation, and response to treatment. Current efforts for allergic disease diagnosis have focused on clinical evidence as a binary outcome. Although outcome status based on clinical phenotypes (observable characteristics) is convenient and inexpensive to measure in large studies, it does not adequately provide insight into the complex molecular determinants of allergic disease. Individuals with similar clinical diagnoses do not necessarily have similar disease etiologies, natural histories, or responses to treatment. This heterogeneity contributes to the ineffective response to treatment leading to an annual estimated cost of $350 billion in the USA alone. There has been a recent focus to deconvolute the clinical heterogeneity of allergic diseases into specific endotypes using molecular and omics approaches. Endotypes are a means to classify patients based on the underlying pathophysiological mechanisms involving distinct functions or treatment response. The advent of high-throughput molecular omics, immunophenotyping, and bioinformatics methods including machine learning algorithms is facilitating the development of endotype-based diagnosis. As we move to the next decade, we should truly start treating clinical endotypes not clinical phenotype. This review highlights current efforts taking place to improve allergic disease endotyping via molecular omics profiling, immunophenotyping, and machine learning approaches in the context of precision diagnostics in allergic diseases. Graphical Abstract.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The aim of the article is to critically appraise the most relevant studies in the rapidly advancing field of food allergy prevention. RECENT FINDINGS Epidemiologic studies identified atopic dermatitis as a strong risk factor for food allergy, with mounting evidence for impaired skin barrier and cutaneous inflammation in the pathogenesis. Additional risk factors include a family history of atopy, the timing of allergenic food introduction into the infant's diet, dietary diversity, vitamin D, and environmental factors, such as dog ownership. Early introduction of allergenic foods (such as peanut) into the infant diet was shown to significantly reduce the risk of food allergy in infants with risk factors, whereas studies targeting skin barrier function have produced conflicting results. Cumulative evidence supports dietary diversity during pregnancy, breastfeeding, infancy, and early childhood. SUMMARY A variety of interventions have been evaluated for the prevention of atopic dermatitis and food allergy, often producing conflicting results. At present, official guidelines encourage breastfeeding and early allergenic food introduction for infants at risk for food allergy, with an emphasis on dietary diversity, fruits, vegetables, fish, and food sources of vitamin D during pregnancy, lactation, and early life for all infants.
Collapse
Affiliation(s)
- Mary Grace Baker
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, Allergy and Immunology, New York University Langone Health, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Evans DM, Moen GH, Hwang LD, Lawlor DA, Warrington NM. Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization. Int J Epidemiol 2020; 48:861-875. [PMID: 30815700 PMCID: PMC6659380 DOI: 10.1093/ije/dyz019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is considerable interest in estimating the causal effect of a range of maternal environmental exposures on offspring health-related outcomes. Previous attempts to do this using Mendelian randomization methodologies have been hampered by the paucity of epidemiological cohorts with large numbers of genotyped mother-offspring pairs. METHODS We describe a new statistical model that we have created which can be used to estimate the effect of maternal genotypes on offspring outcomes conditional on offspring genotype, using both individual-level and summary-results data, even when the extent of sample overlap is unknown. RESULTS We describe how the estimates obtained from our method can subsequently be used in large-scale two-sample Mendelian randomization studies to investigate the causal effect of maternal environmental exposures on offspring outcomes. This includes studies that aim to assess the causal effect of in utero exposures related to fetal growth restriction on future risk of disease in offspring. We illustrate our framework using examples related to offspring birthweight and cardiometabolic disease, although the general principles we espouse are relevant for many other offspring phenotypes. CONCLUSIONS We advocate for the establishment of large-scale international genetics consortia that are focused on the identification of maternal genetic effects and committed to the public sharing of genome-wide summary-results data from such efforts. This information will facilitate the application of powerful two-sample Mendelian randomization studies of maternal exposures and offspring outcomes.
Collapse
Affiliation(s)
- David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gunn-Helen Moen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Liang-Dar Hwang
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Schoettler N, Rodríguez E, Weidinger S, Ober C. Advances in asthma and allergic disease genetics: Is bigger always better? J Allergy Clin Immunol 2019; 144:1495-1506. [PMID: 31677964 DOI: 10.1016/j.jaci.2019.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
This review focuses on genome-wide association studies (GWASs) of asthma and allergic diseases published between January 1, 2018, and June 30, 2019. During this time period, there were 38 GWASs reported in 19 articles, including the largest performed to date for many of these conditions. Overall, we learned that childhood-onset asthma is associated with the most independent loci compared with other defined groups of asthma and allergic disease cases; adult-onset asthma and moderate-to-severe asthma are associated with fewer genes, which are largely a subset of those associated with childhood-onset asthma. There is significant genetic overlap between asthma and allergic diseases, particularly with respect to childhood-onset asthma, which involves genes that reflect the importance of barrier function biology, and to HLA region genes, which are the most frequently associated genes overall in both groups of diseases. Although the largest GWASs in African American and Latino/Hispanic populations were reported during this period, they are still significantly underpowered compared with studies reported in populations of European ancestry, highlighting the need for larger studies, particularly in patients with childhood-onset asthma and allergic diseases, in these important populations that carry the greatest burden of disease.
Collapse
Affiliation(s)
- Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill; Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Elke Rodríguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
18
|
Zhu LG, Li ZY. [Research advances in influencing factors for immune tolerance to food allergens in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:613-618. [PMID: 31208519 PMCID: PMC7389578 DOI: 10.7499/j.issn.1008-8830.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Food allergen-specific immune tolerance is defined as nonresponsiveness of the adaptive immune system to food antigens. Failed development or inhibition of such tolerance may cause food allergy. With the increasing incidence rate of food allergy year by year, more and more studies have found the association between food allergy and various diseases. The development of food allergen-specific immune tolerance in childhood has been taken more and more seriously. In recent years, many studies have shown that the development of food allergen-specific immune tolerance is influenced by various factors, which can be roughly divided into antigens, organisms, and environment. This article reviews the influencing factors for the development of immune tolerance to food allergens in children, in order to provide help for reducing the incidence of food allergy and improving the prognosis of food allergy.
Collapse
Affiliation(s)
- Li-Guang Zhu
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | | |
Collapse
|
19
|
Huang J, Liu C, Wang Y, Wang C, Xie M, Qian Y, Fu L. Application of in vitro and in vivo models in the study of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|