1
|
Han Q, Gu Y, Qian Y. Study on the mechanism of activating SIRT1/Nrf2/p62 pathway to mediate autophagy-dependent ferroptosis to promote healing of diabetic foot ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03400-4. [PMID: 39320410 DOI: 10.1007/s00210-024-03400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Diabetic foot (DF), a prevalent and grave diabetes sequela, is considered as a notable clinical concern, with SIRT1 downregulation observed in DF patients' blood specimens. Nonetheless, the regulatory mechanisms of SIRT1 in diabetic foot ulcer (DFU) remain unclear. Thus, in the current study, we investigated the role and mechanisms of SIRT1 in alleviating DFU. Western blotting was used to detect the expression of autophagy and ferroptosis-related proteins, CCK8 assay was used to measure cell proliferation. Plate colony method was used to measure bacterial growth, and the inhibitory effect on intracellular and extracellular Staphylococcus aureus was observed after drug intervention. ELISA was used to detect inflammatory cytokines and oxidative stress markers levels. ROS, total iron, and Fe2+ levels were detected using corresponding assays. Additionally, HE staining detected the thickness of the epidermis and dermis of the rat wound tissue while the collagen deposition in the wound tissue was detected using Masson staining. In addition, Prussian blue staining was used to detect iron deposition, and C11 BODIPY 581/591 lipid peroxidation probe was used to detect lipid ROS. Our results suggested that the activation of SIRT1/Nrf2/p62 signaling affects cell proliferation, colony formation, ferroptosis, and the production of lipid ROS in DFU-infected cell model through autophagy. In vivo experiments indicated that activating SIRT1/Nrf2/p62 signaling affects oxidative stress, inflammation, and autophagy in wound tissue and promotes wound healing in DFU rats through mediating autophagy-dependent ferroptosis. Taken together, the activation of SIRT1/Nrf2/p62 pathway can promote DFU healing, which might be mediated by autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Qinglin Han
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China.
| | - Yuming Gu
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| | - Yongquan Qian
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| |
Collapse
|
2
|
Nasiri A, Hosseini SM, Rashidi M, Mozafari H. Association between The SIRT1 and SIRT3 Levels and Gene Polymorphisms with Infertility in War Zones of Kermanshah Province, Iran: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:120-126. [PMID: 36906829 PMCID: PMC10009506 DOI: 10.22074/ijfs.2022.553494.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 03/13/2023]
Abstract
OBJECTIVE War toxin, mustard gas, alkylating agent results in male infertility via inducing reactive oxygen species (ROS) production and DNA mutagenesis. SIRT1 and SIRT3 are multifunctional enzymes that involve in the DNA repair, oxidative stress responses. This study aim is to assess the correlation between serum levels of SIRT1, SIRT3 and both rs3758391T>C and rs185277566C>G gene polymorphisms with infertility in the war zones of Kermanshah province, Iran. MATERIALS AND METHODS In this case-control study based on the semen analysis, samples were divided into two groups infertile (n=100) and fertile (n=100). High-performance liquid chromatography (HPLC) method was used to determine the malondialdehyde level, and also a sperm chromatin dispersion (SCD) test was used to evaluate the DNA fragmentation rate. Using the colorimetric assays, superoxide dismutase (SOD) activity was measured. SIRT1 and SIRT3 protein levels were determined by using ELISA. The genetic variants of SIRT1 rs3758391T>C, and SIRT3 rs185277566C>G, were detected by polymerase chain reaction-restriction fragment length (PCR-RFLP) technique. RESULTS Malondialdehyde (MDA) level and the percentage of DNA fragmentation were higher in infertile samples, but serum levels of SIRT1 and SIRT3, and SOD activity was lower in infertile compared to fertile samples (P<0.001). The TC+CC genotypes and the C allele from SIRT1 rs3758391T>C polymorphism, and CG+GG genotypes and the G allele from SIRT3 rs185277566C>G polymorphism could increase risk of infertility (P<0.05). CONCLUSION The results of this study suggest that war toxins through the impact on genotypes, decreasing levels of SIRT1 and SIRT3 and increasing levels of oxidative stress, lead to defects in the concentration, motility and morphology of sperms and thus, infertility in men.
Collapse
Affiliation(s)
- Abolfazl Nasiri
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Mozafari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Miao F, Li X, Wang C, Yuan H, Wu Z. Bioinformatics analysis of differentially expressed genes in diabetic foot ulcer and preliminary experimental verification. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:89. [PMID: 36819522 PMCID: PMC9929774 DOI: 10.21037/atm-22-6437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Molecular changes are closely related to the pathogenesis and healing process of diabetic foot ulcers (DFUs), and are crucial for the early prediction and intervention of DFU. Methods Bioinformatics analysis was performed in this study to identify the key differentially expressed genes (DEGs) in DFU, analyze their functions and function modes, and conduct preliminary experimental verification to determine the potential pivotal genes in the pathogenesis of DFU. Two datasets, GSE68183 and GSE80178, were obtained from the Gene Expression Omnibus (GEO). DEGs were obtained using GEO2R. Six co-expressed DEGs (co-DEGs) were obtained by R language analysis. The co-DEGs were constructed by using STRING and Cytoscape 3.7.2 to construct a protein-protein interaction (PPI) network, and two hub genes, NHLRC3 and BNIP3, were identified. The BNIP3 gene was selected for further analysis. Co-DEGs were used for Gene Ontology (GO) function analysis using the WebGestalt database, and BNIP3-related biological processes focused on mitochondrial protein decomposition. GO function analysis of the BNIP3 gene and its interacting genes was carried out using the cluster profile package and org.hs.eg. db package of the R language and its biological process was enriched in the cell response to external stimuli and autophagy. Results BNIP3 and its interacting genes were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and KEGG pathway enrichment analysis was performed using the WebGestalt database. The results showed that BNIP3 was significantly correlated with mitochondrial autophagy and the FoxO signaling pathway. The miRDB and TargetScan databases were used to identify the relevant microRNAs (miRNAs) regulating the BNIP3 gene, and it was found that miRNA-182 may be involved in the targeted regulation of BNIP3. Western blot analysis was performed to determine the abnormal expression of BNIP3. Conclusions Our study found that the BNIP3 gene may be a new biomarker and intervention target for DFU.
Collapse
Affiliation(s)
- Fang Miao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China;,Department of Endocrinology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Xixi Li
- Shanxi Medical University, Taiyuan, China
| | - Chenglin Wang
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Heju Yuan
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China;,Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Hu YJ, Song CS, Jiang N. Single nucleotide variations in the development of diabetic foot ulcer: A narrative review. World J Diabetes 2022; 13:1140-1153. [PMID: 36578869 PMCID: PMC9791576 DOI: 10.4239/wjd.v13.i12.1140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus has become a global health problem, and the number of patients with diabetic foot ulcers (DFU) is rapidly increasing. Currently, DFU still poses great challenges to physicians, as the treatment is complex, with high risks of infection, recurrence, limb amputation, and even death. Therefore, a comprehensive understanding of DFU pathogenesis is of great importance. In this review, we summarized recent findings regarding the DFU development from the perspective of single-nucleotide variations (SNVs). Studies have shown that SNVs located in the genes encoding C-reactive protein, interleukin-6, tumor necrosis factor-alpha, stromal cell-derived factor-1, vascular endothelial growth factor, nuclear factor erythroid-2-related factor 2, sirtuin 1, intercellular adhesion molecule 1, monocyte chemoattractant protein-1, endothelial nitric oxide synthase, heat shock protein 70, hypoxia inducible factor 1 alpha, lysyl oxidase, intelectin 1, mitogen-activated protein kinase 14, toll-like receptors, osteoprotegerin, vitamin D receptor, and fibrinogen may be associated with the development of DFU. However, considering the limitations of the present investigations, future multi-center studies with larger sample sizes, as well as in-depth mechanistic research are warranted.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| | - Chen-Sheng Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
5
|
Zou J, Duan Y, Wang Y, Liu A, Chen Y, Guo D, Guo W, Li S, Su Z, Wu Y, Lu H, Deng Y, Zhu J, Li F. Phellopterin cream exerts an anti-inflammatory effect that facilitates diabetes-associated cutaneous wound healing via SIRT1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154447. [PMID: 36150345 DOI: 10.1016/j.phymed.2022.154447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diabetic ulcers, which are characterized by chronic nonhealing wounds with a long-lasting inflammatory state, are a typical symptom in individuals with diabetes, and there is still no effective treatment for these lesions. Angelica dahurica plays a critical role in inflammatory diseases. Among numerous monomeric compounds, phellopterin has been shown to have anti-inflammatory properties. PURPOSE To research the bioactive constituents in Angelica dahurica and their mechanism of action in treating diabetic ulcers. STUDY DESIGN Chemical research of Angelica dahurica led to the identification of a new coumarin, dahuricoumarin A (1), along with seven known compounds (2 - 8). All compounds were tested for anti-inflammatory activity, and phellopterin, compound (3), significantly decreased the expression of intercellular cell adhesion molecule-1 (ICAM-1), a representative indicator of inflammation. Phellopterin can also increase SIRT1 protein, a key target for inflammation. In our research, we confirmed the anti-inflammatory effects of phellopterin on diabetic ulcers and explored the underlying mechanism of action. METHODS The expression of IFN-γ, SIRT1, and ICAM-1 in human diabetic ulcer tissues was studied using immunohistochemistry. Streptozotocin was used to induce a diabetic model in C57BL/6J mice, and ulcers were surgically introduced. After phellopterin treatment, the skin lesions of diabetic mice were observed over a period of time. The protein and mRNA expression levels of SIRT1 and ICAM-1 were measured using H&E, qRT-PCR and immunohistochemical staining. A HaCaT cell inflammatory model was induced by IFN-γ. Using a lentiviral packaging technique, MTT assay, and Western blotting, the effect of phellopterin on the proliferation of HaCaT cells and the expression of ICAM-1 was evaluated under normal and SIRT1 knockdown conditions. RESULTS High levels of ICAM-1 and IFN-γ were identified, but low levels of SIRT1 were found in human diabetic ulcer tissues, and phellopterin showed therapeutic benefits in the healing process by attenuating chronic inflammation and promoting re-epithelialization, along with SIRT1 upregulation and ICAM-1 downregulation. However, inhibiting SIRT1 reversed its proliferative and anti-inflammatory effects. CONCLUSION In vitro and in vivo, phellopterin exerts anti-inflammatory and proliferative effects that promote diabetic wound healing, and the potential mechanism depends on SIRT1.
Collapse
Affiliation(s)
- Jialing Zou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanjuan Duan
- Department of Dermatology, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Aijun Liu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wanjun Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shuang Li
- Department of Anorectal Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Zhou Su
- School of Medicine, Chengdu University, Chengdu 610000, China
| | - Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hanzhi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu Deng
- School of Medicine, Chengdu University, Chengdu 610000, China.
| | - Jianyong Zhu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
6
|
Dai Y, Ma X, Zhang J, Yu S, Zhu Y, Wang J. hsa_circ_0115355 promotes pancreatic β-cell function in patients with type 2 diabetes through the miR-145/SIRT1 axis. J Clin Lab Anal 2022; 36:e24583. [PMID: 35778952 PMCID: PMC9396171 DOI: 10.1002/jcla.24583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex metabolic disease closely related to obesity, a growing global health problem. T2DM is characterized by decreased islet beta‐cell mass and impaired insulin release from these cells, and this dysfunction is exacerbated by hyperglycemia (glucolipotoxicity). Circular RNAs (circRNAs) are abnormally expressed and play a regulatory role in T2DM. Objective This study aimed to evaluate the function and molecular mechanism of hsa_circ_0115355 in the progression of T2DM. Methods The regulatory effect of hsa_circ_0115355 on INS‐1 cell function was assessed under glucolipotoxicity by MTT, flow cytometry analysis, and insulin secretion assay. Dual‐luciferase experiments revealed a direct interaction of hsa_circ_0115355 with miR‐145 and miR‐145 with SIRT1. Furthermore, the regulatory role of the hsa_circ_0115355/miR‐145/SIRT1 axis was verified by examining the function of INS‐1. Results In this study, hsa_circ_0115355 was significantly underexpressed in both patients with T2DM and INS‐1 cell lines. This study thus showed that hsa_circ_0115355 inhibits the occurrence and development of T2DM by regulating the expression of SIRT1 by adsorbing miR‐145. Conclusion The underexpression hsa_circ_0115355 is also a potential novel diagnostic marker and therapeutic target for T2DM.
Collapse
Affiliation(s)
- Ying Dai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Xudan Ma
- Ningbo University School of Medicine, Ningbo, China
| | | | - Shuting Yu
- Ningbo University School of Medicine, Ningbo, China
| | - Yuchao Zhu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Ningbo University School of Medicine, Ningbo, China
| | - Jianhua Wang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
7
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
8
|
SIRT1 functional polymorphisms (rs12778366, rs3758391) as genetic biomarkers of susceptibility to type 2 diabetes mellitus in Iranians: a case-control study and computational analysis. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-020-00898-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Zhao J, Zhang LX, Wang YT, Li Y, Chen Md HL. Genetic Polymorphisms and the Risk of Diabetic Foot: A Systematic Review and Meta-Analyses. INT J LOW EXTR WOUND 2020; 21:574-587. [PMID: 33327826 DOI: 10.1177/1534734620977599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetic foot (DF) is a dangerous complication of diabetes. The aim of the study was to synthesize all the published single nucleotide polymorphisms (SNPs) of DF to objectively evaluate the relationship of SNPs and DF risks. METHODS The HuGE database and CNKI were searched for eligible publications on genetic polymorphisms and the risk of DF systematically. The quality of literatures was evaluated by the Newcastle-Ottawa scale. Pooled odds ratios with a 95% confidence interval for SNPs were evaluated through 3 genetic models. RESULTS Citing 29 different polymorphisms from 24 articles and the study met our selection criteria. There were 24 polymorphisms summarized systematically, and 5 merged polymorphisms for a meta-analysis: 9 positively associated with DF: HIF-1α rs11549465, TNF-α rs1800629, TLR-9 rs5743836, FIB rs6056, HSP70-2437C/T, VDR rs2228570, LOX rs1800449, ITLN1 rs2274907, and OPG rs2073617, but OPG rs3134069 was not a risk factor in DF; 6 negatively associated with DF: VEGF rs833061 and rs2010963, MCP-1 rs1024611, SDF-1 rs1801157, SIRT1 rs12778366, and OPG rs2073617. In addition, 13 polymorphisms were not associated with DF: MMP-9 rs3918242, eNOS rs1799983, VEGF rs3025039, -7C/T, rs1570360, rs13207351, and rs699947, IL-6 rs1800795, HIF-1α rs11549467, TNF-α rs361525, TLR-2 rs3804100, SIRT1 rs3758391, and TIMP-1 rs2070584. CONCLUSIONS The study provided some evidence for SNPs to the development of diabetic foot. The meta-analysis showed that rs1024611 of MCP-1 may be regarded as a protective factor, especially in Asian populations. Other loci indicated inconsistent results.
Collapse
Affiliation(s)
- Jun Zhao
- Nantong University, Nantong City, People's Republic of China
| | - Le-Xuan Zhang
- Nantong University, Nantong City, People's Republic of China
| | - Yu-Ting Wang
- Nantong University, Nantong City, People's Republic of China
| | - Yang Li
- Nantong University, Nantong City, People's Republic of China
| | | |
Collapse
|
10
|
Lang X, Zhao N, He Q, Li X, Li X, Sun C, Zhang X. Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull 2020; 165:30-39. [PMID: 32987101 DOI: 10.1016/j.brainresbull.2020.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Although previous studies showed that exercise can improve cognitive dysfunction in type 2 diabetes (T2DM), the underlying mechanism remains unclear. Sirtuin 1 (SIRT1) has been shown to play a role in regulating inflammatory responses in the brain and increasing BDNF expression. This study investigated the effects of treadmill exercise on the hippocampal inflammatory response and BDNF expression in a T2DM mice model. We also tested whether these effects are SIRT1-dependent. In this study, C57BL/ 6 mice were used to construct T2DM model by a high-fat diet and STZ injection. We found that treadmill exercise for 8 weeks can significantly improve the cognitive dysfunction, alleviate activation of proinflammatory microglia M1 (Iba1 labeling) in the hippocampus of T2DM mice, and reduce the levels of proinflammatory factors IL-1β, IL-6, TNF-α, increase the expression levels of anti-inflammatory factors IL-10, TGF-β1, and promote the release of BDNF. We also found that exercise activate the signaling pathway of SIRT1/ NF-κB and SIRT1/ PGC-1α/ FNDC5/ BDNF. After the application of nicotinamide (NAM, SIRT1 inhibitor), the positive effects of exercise were remarkably suppressed. Our results showed that long-term moderate intensity treadmill exercise can alleviate inflammatory response in the hippocampus and increase BDNF expression in T2DM mice by activating SIRT1.
Collapse
Affiliation(s)
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Xun Li
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Chuanning Sun
- School of Physical Education of Shandong University, Jinan, China
| | - Xianliang Zhang
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
11
|
Zhao W, Liang J, Chen Z, Diao Y, Miao G. Combined analysis of circRNA and mRNA profiles and interactions in patients with Diabetic Foot and Diabetes Mellitus. Int Wound J 2020; 17:1183-1193. [PMID: 32573975 DOI: 10.1111/iwj.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
In order to elucidate the pathogenesis and explore new biomarkers for diabetes and diabetic foot (DF), an analysis using RNA sequencing affords broader insights into gene expression regulatory networks in DF. To better explore the molecular basis of DF, we carried out an analysis of circular RNA (circRNA) and messenger RNA (mRNA) expression profiles of serum samples from DF patients and diabetes mellitus (DM) patients. The potential roles and interactions of differentially expressed circRNAs and mRNAs were classified by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Compared with diabetes patients, 279 mRNAs were upregulated and 353 mRNAs were downregulated in the serum of DF patients, and 33 circRNAs were differently expressed. The differential genes at the nodes of the interaction network were screened, and TLR6 RUNX1 and ST2 were found to be related to the progression of diabetes and DF. The enrichment pathway analysis revealed that the lysosomal pathway played a critical role in the occurrence and development of DF. TLR6, RUNX1, and ST2 mRNA expressions and the lysosomal pathway may be involved in the pathogenesis of diabetes and DF. In addition, methane metabolism and Chagas disease pathways were observed in the occurrence and development of DF, which is a new discovery in this study. This study provides clues on the molecular mechanisms of DF at the circRNA and mRNA levels.
Collapse
Affiliation(s)
- Wanni Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Miao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Prabhakar PK, Singh K, Kabra D, Gupta J. Natural SIRT1 modifiers as promising therapeutic agents for improving diabetic wound healing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153252. [PMID: 32505916 DOI: 10.1016/j.phymed.2020.153252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The occurrence of chronic wounds, account for significant suffering of diabetic people, together with increasing healthcare burden. The chronic wounds associated with diabetes do not undergo the normal healing process rather stagnate into chronic proinflammatory phase as well as declined fibroblast function and impaired cell migration. HYPOTHESIS SIRT1, which is the most studied isoform of the sirtuin family in mammals, has now emerged as a crucial target for improving diabetic wound healing. It is an NAD+ dependent deacetylase, originally characterized to deacetylate histone proteins leading to heterochromatin formation and gene silencing. It is now known to regulate a number of cellular processes like cell proliferation, division, senescence, apoptosis, DNA repair, and metabolism. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of three databases (Google Scholar, Web of science and PubMed) in December 2019. The keywords used as search terms were related to SIRT1 and wound healing. The systematic search retrieved 649 papers that were potentially relevant and after selection procedure, 73 studies were included this review and discussed below. RESULTS Many SIRT1 activating compounds (SACs) were found protective and improve diabetic wound healing through regulation of inflammation, cell migration, oxidative stress response and formation of granulation tissue at the wound site. CONCLUSIONS However, contradictory reports describe the opposing role of SACs on the regulation of cell migration and cancer incidence. SACs are therefore subjected to intense research for understanding the mechanisms responsible for controlling cell migration and therefore possess prospective to enter the clinical arena in the foreseeable future.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, Lovely Professional University Punjab, India 144411
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dhiraj Kabra
- Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Limited, Vadodara, Gujarat, India, 390010
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University Punjab, India 144411.
| |
Collapse
|
13
|
Ramírez Á, Hernández M, Suárez-Sánchez R, Ortega C, Peralta J, Gómez J, Valladares A, Cruz M, Vázquez-Moreno MA, Suárez-Sánchez F. Type 2 diabetes-associated polymorphisms correlate with SIRT1 and TGF-β1 gene expression. Ann Hum Genet 2019; 84:185-194. [PMID: 31799723 DOI: 10.1111/ahg.12363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
The polymorphisms rs3758391 and rs1800470 located in SIRT1 and TGF-β1 have been associated with type 2 diabetes in different populations but its functional effect is not clear. In this study, we evaluated their effect on the expression of SIRT1 and TGF-β1 in peripheral blood as well as their participation in the formation of DNA-protein complexes in a pancreas-derived cell line. It has been described that SIRT1 and TGF-β1 participate in cell growth and regulation of production and secretion of insulin in the pancreas. Anthropometric and biochemical profiles of 127 adults were measured. Genotypes for rs3758391 and rs1800470 were determined using TaqMan assays. Expression analysis of SIRT1 and TGF-β1 were performed using real-time PCR. Gene expression of these genes increased 1.8 ± 0.6- and 1.3 ± 0.6-fold in patients carrying the TT genotype of rs3758391 and rs1800470 when compared to carriers of the CC genotype. Then, we tested whether these single-nucleotide polymorphisms (SNPs) (and rs932658, which is in linkage disequilibrium with rs3758391) are located in regulatory DNA-protein binding sites by electrophoretic mobility shift assays using nuclear extract from the pancreas-derived cell line BxPC-3. The electrophoretic mobility shift assay showed no binding of nuclear proteins to DNA. In conclusion, the genotypes of rs3758391 and rs1800470 are associated with modifications in the expression of the genes SIRT1 and TGF-β1, respectively, but none of the tested SNPs are located in regulatory DNA-protein binding sites.
Collapse
Affiliation(s)
- Ángeles Ramírez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miriam Hernández
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación LGII, Ciudad de México
| | - Clara Ortega
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jesús Peralta
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Jaime Gómez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Adán Valladares
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| | | | - Fernando Suárez-Sánchez
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Ciudad de México, México
| |
Collapse
|
14
|
Bartoli-Leonard F, Wilkinson FL, Langford-Smith AWW, Alexander MY, Weston R. The Interplay of SIRT1 and Wnt Signaling in Vascular Calcification. Front Cardiovasc Med 2018; 5:183. [PMID: 30619890 PMCID: PMC6305318 DOI: 10.3389/fcvm.2018.00183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular calcification is a major health risk and is highly correlated with atherosclerosis, diabetes, and chronic kidney disease. The development of vascular calcification is an active and complex process linked with a multitude of signaling pathways, which regulate promoters and inhibitors of osteogenesis, the balance of which become deregulated in disease conditions. SIRT1, a protein deacetylase, known to be protective in inhibiting oxidative stress and inflammation within the vessel wall, has been shown as a possible key player in modulating the cell-fate determining canonical Wnt signaling pathways. Suppression of SIRT1 has been reported in patients suffering with cardiovascular pathologies, suggesting that the sustained acetylation of osteogenic factors could contribute to their activation and in turn, lead to the progression of calcification. There is clear evidence of the synergy between β-Catenin and elevated Runx2, and with Wnt signaling being β-Catenin dependent, further understanding is needed as to how these molecular pathways converge and interact, in order to provide novel insight into the mechanism by which smooth muscle cells switch to an osteogenic differentiation programme. Therefore, this review will describe the current concepts of pathological soft tissue mineralization, with a focus on the contribution of SIRT1 as a regulator of Wnt signaling and its targets, discussing SIRT1 as a potential target for manipulation and therapy.
Collapse
Affiliation(s)
- Francesca Bartoli-Leonard
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alex W W Langford-Smith
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Y Alexander
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ria Weston
- Translational Cardiovascular Science, Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|