1
|
Wang Z, Yao J, Jing X, Li K, Lu S, Yang H, Ding H, Li K, Cheng W, He G, Jiang T, Liu F, Yu J, Han Z, Cheng Z, Tan S, Wang Z, Qi E, Wang S, Zhang Y, Li L, Dong X, Liang P, Yu X. A combined model based on radiomics features of Sonazoid contrast-enhanced ultrasound in the Kupffer phase for the diagnosis of well-differentiated hepatocellular carcinoma and atypical focal liver lesions: a prospective, multicenter study. Abdom Radiol (NY) 2024; 49:3427-3437. [PMID: 38744698 DOI: 10.1007/s00261-024-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The objective of this study was to develop a combined model based on radiomics features of Sonazoid contrast-enhanced ultrasound (CEUS) during the Kupffer phase and to evaluate its value in differentiating well-differentiated hepatocellular carcinoma (w-HCC) from atypical benign focal liver lesions (FLLs). METHODS A total of 116 patients with preoperatively Sonazoid-CEUS confirmed w-HCC or benign FLL were selected from a prospective multiple study on the clinical application of Sonazoid in FLLs conducted from August 2020 to March 2021. According to the randomization principle, the patients were divided into a training cohort and a test cohort in a 7:3 ratio. Seventy-nine patients were used for establishing and training the radiomics model and combined model. In comparison, 37 patients were used for validating and comparing the performance of the models. The diagnostic efficacy of the models for w-HCC and atypical benign FLLs was evaluated using ROCs curves and decision curves. A combined model nomogram was created to assess its value in reducing unnecessary biopsies. RESULTS Among the patients, there were 55 cases of w-HCC and 61 cases of atypical benign FLLs, including 28 cases of early liver abscess, 16 cases of atypical hepatic hemangioma, 8 cases of hepatocellular dysplastic nodules (DN), and 9 cases of focal nodular hyperplasia (FNH). The radiomics model and combined model we established had AUCs of 0.905 and 0.951, respectively, in the training cohort, and the AUCs of the two models in the test cohort were 0.826 and 0.912, respectively. The combined model outperformed the radiomics feature model significantly. Decision curve analysis demonstrated that the combined model achieved a higher net benefit within a specific threshold probability range (0.25 to 1.00). A nomogram of the combined model was developed. CONCLUSION The combined model based on the radiomics features of Sonazoid-CEUS in the Kupffer phase showed satisfactory performance in diagnosing w-HCC and atypical benign FLLs. It can assist clinicians in timely detecting malignant FLLs and reducing unnecessary biopsies for benign diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Jundong Yao
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
- Department of Ultrasound, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, China
| | - Kaiyan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShiChun Lu
- Department of Hepatobiliary Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Li
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangzhi He
- Department of Ultrasound, University of Chinese Academy of Sciences Shenzhen Hospital, Guangming District, Shenzhen, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Jie Yu
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Zhiyu Han
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shuilian Tan
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zhen Wang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Erpeng Qi
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shuo Wang
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - YiQiong Zhang
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Lu Li
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Xiaocong Dong
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, China.
| | - Xiaoling Yu
- Department of Interventional Ultrasound, First Medical Center of Chinese, PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2
|
Han X, Zhou C, Luo X, Pang H, Han C, Tang L, Yang Z, Nong Y, Lu C. Tumor Targeting with Apatinib-loaded Nanoparticles and Sonodynamic Combined Therapy. Curr Mol Med 2024; 24:648-666. [PMID: 37312441 DOI: 10.2174/1566524023666230613140341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION This study implies the enhancement of apatinib killing effect in 4T1 tumor cells through constructing drug-loaded nanoparticles apatinib/Ce6@ZIF- 8@Membranes (aCZM) to enhance tumor therapeutic targeting and reduce toxic side following sonodynamic therapy (SDT). METHODS apatinib/Ce6@ZIF-8 (aCZ) were synthesized by in situ encapsulation, and aCZM were constructed by encapsulating the nanoparticles with extracted breast cancer 4T1 cell membranes. aCZM were characterized and tested for the stability by electron microscopy, and the membrane proteins on the nanoparticles' surface were assessed using SDS-PAGE gel electrophoresis. The cell viability of 4T1 cells following treatment with aCZM was tested using cell counting kit-8 (CCK-8). The uptake of nanoparticles was detected by laser confocal microscopy and flow cytometry, and the SDT-mediated production of reactive oxygen species (ROS) was verified by singlet oxygen sensor green (SOSG), electron spin resonance (ESR), and DCFH-DA fluorescent probes. The CCK-8 assay and flow cytometry using Calcein/PI were used to assess the antitumoral effect of aCZM nanoparticles under SDT. The biosafety of aCZM was further verified in vitro and in vivo using the hemolysis assay, routine blood test and H&E staining of vital organs in Balb/c mice. RESULTS aCZM with an average particle size of about 210.26 nm were successfully synthesized. The results of the SDS-PAGE gel electrophoresis experiment showed that aCZM have a band similar to that of pure cell membrane proteins. The CCK-8 assay demonstrated the absence of effects on cell viability at a low concentration range, and the relative cell survival rate reached more than 95%. Laser confocal microscopy and flow cytometry analysis showed that aCZM treated group has the strongest fluorescence and the highest cellular uptake of nanoparticles. SOSG, ESR, and DCFH-DA fluorescent probes all indicated that the aCZM + SDT treated group has the highest ROS production. The CCK-8 assay also showed that when the ultrasound intensity was fixed at 0.5 W/cm2, the relative cell survival rates in the medium concentration group (10 μg/ml) (5.54 ± 1.26%) and the high concentration group (20 μg/ml) (2.14 ± 1.63%) were significantly lower than those in the low concentration group (5 μg/ml) (53.40 ± 4.25%). Moreover, there was a concentration and intensity dependence associated with the cellkilling effect. The mortality rate of the aCZM in the ultrasound group (44.95 ± 3.03%) was significantly higher than that of the non-ultrasound (17.00 ± 2.26%) group and aCZ + SDT group (24.85 ± 3.08%) (P<0.0001). The live and dead cells' staining (Calcein/PI) also supported this result. Finally, in vitro hemolysis test at 4 and 24 hours showed that the hemolysis rate of the highest concentration group was less than 1%. The blood routine, biochemistry, and H&E staining results of major organs in Balb/c mice undergoing nano-treatments showed no obvious functional abnormalities and tissue damage in 30 days. CONCLUSION In this study, a multifunctional bionic drug delivery nanoparticles (aCZM) system with good biosafety and compatibility in response to acoustic dynamics was successfully constructed and characterized. This system enhanced apatinib killing effect on tumor cells and reduced toxic side effects under SDT.
Collapse
Affiliation(s)
- Xiao Han
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caifu Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongbing Pang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Libo Tang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ziye Yang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingdan Nong
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chunmiao Lu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Ma L, Zhang H. Machine learning algorithm of ultrasound-mediated intestinal function recovery and nursing efficacy analysis of lower gastrointestinal malignant tumor after surgery. Pak J Med Sci 2021; 37:1662-1666. [PMID: 34712302 PMCID: PMC8520359 DOI: 10.12669/pjms.37.6-wit.4866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: In this paper, machine learning algorithms was used to explore the application value of ultrasound contrast in the early evaluation of neoadjuvant chemotherapy in patients with gastrointestinal malignant liver metastases, and analyzes the effect of sports nursing methods on intestinal function recovery. Methods: Forty-seven patients with gastrointestinal malignancies were divided into 25 patients (combined chemotherapy group) and 22 cases (chemotherapy group) from April 2018 to April 2019. Two groups of patients were treated with CEUS. The effective lesion patients and invalid quantitative parameters were compared between the two groups before and after treatment, and the postoperative routine nursing was implemented. Results: Chemotherapy group effective in 18 cases, accounting for 81.82%; 4 cases, 18.18%. Combination chemotherapy patients 21 cases, accounting for 84.00%; 4 cases, accounting for 16.00%. Conclusion: Based on early is important to assess the efficacy of neoadjuvant chemotherapy in patients with liver metastases peak intensity ultrasound contrast parameters of the machine learning algorithms malignant tumors in the gastrointestinal tract, post-operative care movement helps to restore bowel function.
Collapse
Affiliation(s)
- Lei Ma
- Lei Ma, Master of Medicine. Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, 710061, China
| | - Hao Zhang
- Hao Zhang, PhD. Department of Surgical oncology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an, 710061, China
| |
Collapse
|