1
|
Bhandarkar S, Tsutsumi A, Schneider EB, Ong CS, Paredes L, Brackett A, Ahuja V. Emergent Applications of Machine Learning for Diagnosing and Managing Appendicitis: A State-of-the-Art Review. Surg Infect (Larchmt) 2024; 25:7-18. [PMID: 38150507 DOI: 10.1089/sur.2023.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Background: Appendicitis is an inflammatory condition that requires timely and effective intervention. Despite being one of the most common surgically treated diseases, the condition is difficult to diagnose because of atypical presentations. Ultrasound and computed tomography (CT) imaging improve the sensitivity and specificity of diagnoses, yet these tools bear the drawbacks of high operator dependency and radiation exposure, respectively. However, new artificial intelligence tools (such as machine learning) may be able to address these shortcomings. Methods: We conducted a state-of-the-art review to delineate the various use cases of emerging machine learning algorithms for diagnosing and managing appendicitis in recent literature. The query ("Appendectomy" OR "Appendicitis") AND ("Machine Learning" OR "Artificial Intelligence") was searched across three databases for publications ranging from 2012 to 2022. Upon filtering for duplicates and based on our predefined inclusion criteria, 39 relevant studies were identified. Results: The algorithms used in these studies performed with an average accuracy of 86% (18/39), a sensitivity of 81% (16/39), a specificity of 75% (16/39), and area under the receiver operating characteristic curves (AUROCs) of 0.82 (15/39) where reported. Based on accuracy alone, the optimal model was logistic regression in 18% of studies, an artificial neural network in 15%, a random forest in 13%, and a support vector machine in 10%. Conclusions: The identified studies suggest that machine learning may provide a novel solution for diagnosing appendicitis and preparing for patient-specific post-operative complications. However, further studies are warranted to assess the feasibility and advisability of implementing machine learning-based tools in clinical practice.
Collapse
Affiliation(s)
| | - Ayaka Tsutsumi
- Department of Surgery, Yale School of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric B Schneider
- Department of Surgery, Yale School of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chin Siang Ong
- Department of Surgery, Yale School of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lucero Paredes
- Department of Surgery, Yale School of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alexandria Brackett
- Harvey Cushing/John Hay Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vanita Ahuja
- Department of Surgery, Yale School of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
He X, Zheng X, Ding H. Existing Barriers Faced by and Future Design Recommendations for Direct-to-Consumer Health Care Artificial Intelligence Apps: Scoping Review. J Med Internet Res 2023; 25:e50342. [PMID: 38109173 PMCID: PMC10758939 DOI: 10.2196/50342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Direct-to-consumer (DTC) health care artificial intelligence (AI) apps hold the potential to bridge the spatial and temporal disparities in health care resources, but they also come with individual and societal risks due to AI errors. Furthermore, the manner in which consumers interact directly with health care AI is reshaping traditional physician-patient relationships. However, the academic community lacks a systematic comprehension of the research overview for such apps. OBJECTIVE This paper systematically delineated and analyzed the characteristics of included studies, identified existing barriers and design recommendations for DTC health care AI apps mentioned in the literature and also provided a reference for future design and development. METHODS This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines and was conducted according to Arksey and O'Malley's 5-stage framework. Peer-reviewed papers on DTC health care AI apps published until March 27, 2023, in Web of Science, Scopus, the ACM Digital Library, IEEE Xplore, PubMed, and Google Scholar were included. The papers were analyzed using Braun and Clarke's reflective thematic analysis approach. RESULTS Of the 2898 papers retrieved, 32 (1.1%) covering this emerging field were included. The included papers were recently published (2018-2023), and most (23/32, 72%) were from developed countries. The medical field was mostly general practice (8/32, 25%). In terms of users and functionalities, some apps were designed solely for single-consumer groups (24/32, 75%), offering disease diagnosis (14/32, 44%), health self-management (8/32, 25%), and health care information inquiry (4/32, 13%). Other apps connected to physicians (5/32, 16%), family members (1/32, 3%), nursing staff (1/32, 3%), and health care departments (2/32, 6%), generally to alert these groups to abnormal conditions of consumer users. In addition, 8 barriers and 6 design recommendations related to DTC health care AI apps were identified. Some more subtle obstacles that are particularly worth noting and corresponding design recommendations in consumer-facing health care AI systems, including enhancing human-centered explainability, establishing calibrated trust and addressing overtrust, demonstrating empathy in AI, improving the specialization of consumer-grade products, and expanding the diversity of the test population, were further discussed. CONCLUSIONS The booming DTC health care AI apps present both risks and opportunities, which highlights the need to explore their current status. This paper systematically summarized and sorted the characteristics of the included studies, identified existing barriers faced by, and made future design recommendations for such apps. To the best of our knowledge, this is the first study to systematically summarize and categorize academic research on these apps. Future studies conducting the design and development of such systems could refer to the results of this study, which is crucial to improve the health care services provided by DTC health care AI apps.
Collapse
Affiliation(s)
- Xin He
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zheng
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Ding
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Ilicki J. Challenges in evaluating the accuracy of AI-containing digital triage systems: A systematic review. PLoS One 2022; 17:e0279636. [PMID: 36574438 PMCID: PMC9794085 DOI: 10.1371/journal.pone.0279636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Patient-operated digital triage systems with AI components are becoming increasingly common. However, previous reviews have found a limited amount of research on such systems' accuracy. This systematic review of the literature aimed to identify the main challenges in determining the accuracy of patient-operated digital AI-based triage systems. METHODS A systematic review was designed and conducted in accordance with PRISMA guidelines in October 2021 using PubMed, Scopus and Web of Science. Articles were included if they assessed the accuracy of a patient-operated digital triage system that had an AI-component and could triage a general primary care population. Limitations and other pertinent data were extracted, synthesized and analysed. Risk of bias was not analysed as this review studied the included articles' limitations (rather than results). Results were synthesized qualitatively using a thematic analysis. RESULTS The search generated 76 articles and following exclusion 8 articles (6 primary articles and 2 reviews) were included in the analysis. Articles' limitations were synthesized into three groups: epistemological, ontological and methodological limitations. Limitations varied with regards to intractability and the level to which they can be addressed through methodological choices. Certain methodological limitations related to testing triage systems using vignettes can be addressed through methodological adjustments, whereas epistemological and ontological limitations require that readers of such studies appraise the studies with limitations in mind. DISCUSSION The reviewed literature highlights recurring limitations and challenges in studying the accuracy of patient-operated digital triage systems with AI components. Some of these challenges can be addressed through methodology whereas others are intrinsic to the area of inquiry and involve unavoidable trade-offs. Future studies should take these limitations in consideration in order to better address the current knowledge gaps in the literature.
Collapse
|
4
|
Muto R, Fukuta S, Watanabe T, Shindo Y, Kanemitsu Y, Kajikawa S, Yonezawa T, Inoue T, Ichihashi T, Shiratori Y, Maruyama S. Predicting oxygen requirements in patients with coronavirus disease 2019 using an artificial intelligence-clinician model based on local non-image data. Front Med (Lausanne) 2022; 9:1042067. [PMID: 36530899 PMCID: PMC9748157 DOI: 10.3389/fmed.2022.1042067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND When facing unprecedented emergencies such as the coronavirus disease 2019 (COVID-19) pandemic, a predictive artificial intelligence (AI) model with real-time customized designs can be helpful for clinical decision-making support in constantly changing environments. We created models and compared the performance of AI in collaboration with a clinician and that of AI alone to predict the need for supplemental oxygen based on local, non-image data of patients with COVID-19. MATERIALS AND METHODS We enrolled 30 patients with COVID-19 who were aged >60 years on admission and not treated with oxygen therapy between December 1, 2020 and January 4, 2021 in this 50-bed, single-center retrospective cohort study. The outcome was requirement for oxygen after admission. RESULTS The model performance to predict the need for oxygen by AI in collaboration with a clinician was better than that by AI alone. Sodium chloride difference >33.5 emerged as a novel indicator to predict the need for oxygen in patients with COVID-19. To prevent severe COVID-19 in older patients, dehydration compensation may be considered in pre-hospitalization care. CONCLUSION In clinical practice, our approach enables the building of a better predictive model with prompt clinician feedback even in new scenarios. These can be applied not only to current and future pandemic situations but also to other diseases within the healthcare system.
Collapse
Affiliation(s)
- Reiko Muto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shigeki Fukuta
- Artificial Intelligence Laboratory, Fujitsu Limited, Kawasaki, Japan
| | | | - Yuichiro Shindo
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Kanemitsu
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shigehisa Kajikawa
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Respiratory Medicine and Allergology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toshiyuki Yonezawa
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Respiratory Medicine and Allergology, Aichi Medical University Hospital, Nagakute, Japan
| | - Takahiro Inoue
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuji Ichihashi
- Department of Internal Medicine, Aichi Prefectural Aichi Hospital, Okazaki, Japan
| | - Yoshimune Shiratori
- Center for Healthcare Information Technology (C-HiT), Nagoya University, Nagoya, Japan
- Medical IT Center, Nagoya University Hospital, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Will Big Data and personalized medicine do the gender dimension justice? AI & SOCIETY 2021; 38:829-841. [PMID: 34092931 PMCID: PMC8169394 DOI: 10.1007/s00146-021-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Over the last decade, humans have produced each year as much data as were produced throughout the entire history of humankind. These data, in quantities that exceed current analytical capabilities, have been described as “the new oil,” an incomparable source of value. This is true for healthcare, as well. Conducting analyses of large, diverse, medical datasets promises the detection of previously unnoticed clinical correlations and new diagnostic or even therapeutic possibilities. However, using Big Data poses several problems, especially in terms of representing the uniqueness of each patient and expressing the differences between individuals, primarily gender and sex differences. The first two sections of the paper provide a definition of “Big Data” and illustrate the uses of Big Data in medicine. Subsequently, the paper explores the struggle to represent exhaustively the uniqueness of the patient through Big Data is highlighted prior to a deeper investigation of the digital representation of gender in personalized medicine. The final part of the paper put forward a series of recommendations for better approaching the complexity of gender in medical and clinical research involving Big Data for the creation or enhancement of personalized medicine services.
Collapse
|
6
|
Perlman A, Vodonos Zilberg A, Bak P, Dreyfuss M, Leventer-Roberts M, Vurembrand Y, Jeffries HE, Fisher E, Steuerman Y, Namir Y, Goldschmidt Y, Souroujon D. Characteristics and Symptoms of App Users Seeking COVID-19-Related Digital Health Information and Remote Services: Retrospective Cohort Study. J Med Internet Res 2020; 22:e23197. [PMID: 32961527 PMCID: PMC7609191 DOI: 10.2196/23197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Patient-facing digital health tools have been promoted to help patients manage concerns related to COVID-19 and to enable remote care and self-care during the COVID-19 pandemic. It has also been suggested that these tools can help further our understanding of the clinical characteristics of this new disease. However, there is limited information on the characteristics and use patterns of these tools in practice. OBJECTIVE The aims of this study are to describe the characteristics of people who use digital health tools to address COVID-19-related concerns; explore their self-reported symptoms and characterize the association of these symptoms with COVID-19; and characterize the recommendations provided by digital health tools. METHODS This study used data from three digital health tools on the K Health app: a protocol-based COVID-19 self-assessment, an artificial intelligence (AI)-driven symptom checker, and communication with remote physicians. Deidentified data were extracted on the demographic and clinical characteristics of adults seeking COVID-19-related health information between April 8 and June 20, 2020. Analyses included exploring features associated with COVID-19 positivity and features associated with the choice to communicate with a remote physician. RESULTS During the period assessed, 71,619 individuals completed the COVID-19 self-assessment, 41,425 also used the AI-driven symptom checker, and 2523 consulted with remote physicians. Individuals who used the COVID-19 self-assessment were predominantly female (51,845/71,619, 72.4%), with a mean age of 34.5 years (SD 13.9). Testing for COVID-19 was reported by 2901 users, of whom 433 (14.9%) reported testing positive. Users who tested positive for COVID-19 were more likely to have reported loss of smell or taste (relative rate [RR] 6.66, 95% CI 5.53-7.94) and other established COVID-19 symptoms as well as ocular symptoms. Users communicating with a remote physician were more likely to have been recommended by the self-assessment to undergo immediate medical evaluation due to the presence of severe symptoms (RR 1.19, 95% CI 1.02-1.32). Most consultations with remote physicians (1940/2523, 76.9%) were resolved without need for referral to an in-person visit or to the emergency department. CONCLUSIONS Our results suggest that digital health tools can help support remote care and self-management of COVID-19 and that self-reported symptoms from digital interactions can extend our understanding of the symptoms associated with COVID-19.
Collapse
Affiliation(s)
| | | | - Peter Bak
- K Health Inc, New York, NY, United States
| | | | - Maya Leventer-Roberts
- K Health Inc, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yael Vurembrand
- K Health Inc, New York, NY, United States
- Center for Corona Treatment, Maccabi Health Services, Tel Aviv, Israel
| | - Howard E Jeffries
- K Health Inc, New York, NY, United States
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Eyal Fisher
- K Health Inc, New York, NY, United States
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Abstract
The increasing digitalization of social life opens up new possibilities for modern health care. This article describes innovative application possibilities that could help to sustainably improve the treatment of severe injuries in the future with the help of methods such as big data, artificial intelligence, intelligence augmentation, and machine learning. For the successful application of these methods, suitable data sources must be available. The TraumaRegister DGU® (TR-DGU) currently represents the largest database in Germany in the field of care for severely injured patients that could potentially be used for digital innovations. In this context, it is a good example of the problem areas such as data transfer, interoperability, standardization of data sets, parameter definitions, and ensuring data protection, which still represent major challenges for the digitization of trauma care. In addition to the further development of new analysis methods, solutions must also continue to be sought to the question of how best to intelligently link the relevant data from the various data sources.
Collapse
|
8
|
Mahler M, Martinez-Prat L, Sparks JA, Deane KD. Precision medicine in the care of rheumatoid arthritis: Focus on prediction and prevention of future clinically-apparent disease. Autoimmun Rev 2020; 19:102506. [PMID: 32173516 DOI: 10.1016/j.autrev.2020.102506] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
There is an emerging understanding that an individual's risk for future rheumatoid arthritis (RA) can be determined using a combination of factors while they are still in a state where clinically-apparent inflammatory arthritis (IA) is not yet present. Indeed, this concept has underpinned several completed and ongoing prevention trials in RA. Importantly, risk factors can be divided into modifiable (e.g. smoking, exercise, dental care and diet) and non-modifiable factors (e.g. genetics, sex, age). In addition, there are now several biomarkers including autoantibodies, inflammatory markers and imaging techniques that are highly predictive of future clinically-apparent IA/RA. Although none of the prevention studies have yet provided major breakthroughs, several of them have provided valuable insights that can help to improve the design of future clinical trials and enable RA prevention. In aggregate, these findings suggest that the most accurate disease prediction models will require the combination of demographic and clinical information, biomarkers and potentially medical imaging data to identify individuals for intervention. This review summarizes some of the key aspects around precision medicine in RA with special focus on disease prediction and prevention.
Collapse
Affiliation(s)
| | | | - Jeffrey A Sparks
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin D Deane
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Abstract
Artificial intelligence (AI) is a very relevant topic for the medicine of the future. This article focuses on the field of AI in the context of orthopedics and trauma surgery. The main focus is on the potentials of AI in the analysis of symptoms, radiological images, clinical data sets, use in hospitals and operating theaters as well as for training and education. For the orthopedics and trauma surgery of the future AI is much more than pure fiction; however, there is still a long way to go before the potential of an optimized and individualized patient care can be utilized. Interdisciplinary and international approaches, including personnel, economic, legal and ethical aspects will play a decisive role in this respect.
Collapse
|