1
|
Paredes-Acuna N, Utpadel-Fischler D, Ding K, Thakor NV, Cheng G. Upper limb intention tremor assessment: opportunities and challenges in wearable technology. J Neuroeng Rehabil 2024; 21:8. [PMID: 38218890 PMCID: PMC10787996 DOI: 10.1186/s12984-023-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Tremors are involuntary rhythmic movements commonly present in neurological diseases such as Parkinson's disease, essential tremor, and multiple sclerosis. Intention tremor is a subtype associated with lesions in the cerebellum and its connected pathways, and it is a common symptom in diseases associated with cerebellar pathology. While clinicians traditionally use tests to identify tremor type and severity, recent advancements in wearable technology have provided quantifiable ways to measure movement and tremor using motion capture systems, app-based tasks and tools, and physiology-based measurements. However, quantifying intention tremor remains challenging due to its changing nature. METHODOLOGY & RESULTS This review examines the current state of upper limb tremor assessment technology and discusses potential directions to further develop new and existing algorithms and sensors to better quantify tremor, specifically intention tremor. A comprehensive search using PubMed and Scopus was performed using keywords related to technologies for tremor assessment. Afterward, screened results were filtered for relevance and eligibility and further classified into technology type. A total of 243 publications were selected for this review and classified according to their type: body function level: movement-based, activity level: task and tool-based, and physiology-based. Furthermore, each publication's methods, purpose, and technology are summarized in the appendix table. CONCLUSIONS Our survey suggests a need for more targeted tasks to evaluate intention tremors, including digitized tasks related to intentional movements, neurological and physiological measurements targeting the cerebellum and its pathways, and signal processing techniques that differentiate voluntary from involuntary movement in motion capture systems.
Collapse
Affiliation(s)
- Natalia Paredes-Acuna
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany.
| | - Daniel Utpadel-Fischler
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Keqin Ding
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gordon Cheng
- Institute for Cognitive Systems, Technical University of Munich, Arcisstraße 21, 80333, Munich, Germany
| |
Collapse
|
2
|
Menekseoglu AK, Korkmaz MD, Is EE, Basoglu C, Ozden AV. Acute Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Hand Tremor in Parkinson's Disease: A Pilot Study of Case Series. SISLI ETFAL HASTANESI TIP BULTENI 2023; 57:513-519. [PMID: 38268660 PMCID: PMC10805042 DOI: 10.14744/semb.2023.77200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/03/2023] [Indexed: 01/26/2024]
Abstract
Objectives The aim of this study is to investigate the effects of non-invasive vagus nerve stimulation (VNS) on tremor in Parkinson's disease (PD). Methods This single-center, prospective, and implementation study with before-after design included five participants diagnosed with PD. Auricular VNS was applied to each participant 3 times on different days. VNS was applied to the participants as the right ear, left ear, and bilateral ear. The cardiovascular parameters of the participants were evaluated with Kubios HRV Standard and tremor with UPDRS tremor subscale and smartphone application before and after the intervention. Results Significant decrease in diastolic blood pressure (p=0.043) was found in participants who underwent bilateral auricular VNS. Although there was no significant change in the UPDRS tremor subscale, decreases in the maximum tremor amplitude in the x (p=0.043) and y (0.014) planes were detected in the measurements made with the smartphone application. Conclusion In this study, a decrease in the tremor amplitude measured in the 3D plane with auricular VNS was found in patients with PD.
Collapse
Affiliation(s)
- Ahmet Kivanc Menekseoglu
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Türkiye
| | - Merve Damla Korkmaz
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Türkiye
| | - Enes Efe Is
- Department of Physical Medicine and Rehabilitation, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ceyhun Basoglu
- Department of Physical Medicine and Rehabilitation, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Türkiye
| | - Ali Veysel Ozden
- Department of Physical Medicine and Rehabilitation, BHT Clinic Istanbul Tema Hospital, Istanbul, Türkiye
| |
Collapse
|
3
|
Fujikawa J, Morigaki R, Yamamoto N, Nakanishi H, Oda T, Izumi Y, Takagi Y. Diagnosis and Treatment of Tremor in Parkinson's Disease Using Mechanical Devices. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010078. [PMID: 36676025 PMCID: PMC9863142 DOI: 10.3390/life13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Recently, researchers conducted several studies on tremor evaluation using wearable sensors and devices, which may support accurate diagnosis. Mechanical devices are also commonly used to treat tremors and have been actively researched and developed. Here, we aimed to review recent progress and the efficacy of the devices related to Parkinsonian tremors. METHODS The PubMed and Scopus databases were searched for articles. We searched for "Parkinson disease" and "tremor" and "device". RESULTS Eighty-six articles were selected by our systematic approach. Many studies demonstrated that the diagnosis and evaluation of tremors in patients with PD can be done accurately by machine learning algorithms. Mechanical devices for tremor suppression include deep brain stimulation (DBS), electrical muscle stimulation, and orthosis. In recent years, adaptive DBS and optimization of stimulation parameters have been studied to further improve treatment efficacy. CONCLUSIONS Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are in practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for these devices.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Correspondence: ; Tel.: +81-88-633-7149
| | - Nobuaki Yamamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Beauty Life Corporation, 2 Kiba-Cho, Minato-Ku, Nagoya 455-0021, Aichi, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yuishin Izumi
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| |
Collapse
|
4
|
Di Libero T, Langiano E, Carissimo C, Ferrara M, Diotaiuti P, Rodio A. Technological support for people with Parkinson’s disease: a narrative review. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Vescio B, Quattrone A, Nisticò R, Crasà M, Quattrone A. Wearable Devices for Assessment of Tremor. Front Neurol 2021; 12:680011. [PMID: 34177785 PMCID: PMC8226078 DOI: 10.3389/fneur.2021.680011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Tremor is an impairing symptom associated with several neurological diseases. Some of such diseases are neurodegenerative, and tremor characterization may be of help in differential diagnosis. To date, electromyography (EMG) is the gold standard for the analysis and diagnosis of tremors. In the last decade, however, several studies have been conducted for the validation of different techniques and new, non-invasive, portable, or even wearable devices have been recently proposed as complementary tools to EMG for a better characterization of tremors. Such devices have proven to be useful for monitoring the efficacy of therapies or even aiding in differential diagnosis. The aim of this review is to present systematically such new solutions, trying to highlight their potentialities and limitations, with a hint to future developments.
Collapse
Affiliation(s)
| | - Andrea Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Græcia University, Catanzaro, Italy
| | - Rita Nisticò
- Neuroimaging Unit, Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Marianna Crasà
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Græcia University, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroimaging Unit, Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
6
|
Vescio B, Nisticò R, Augimeri A, Quattrone A, Crasà M, Quattrone A. Development and Validation of a New Wearable Mobile Device for the Automated Detection of Resting Tremor in Parkinson's Disease and Essential Tremor. Diagnostics (Basel) 2021; 11:200. [PMID: 33573076 PMCID: PMC7911899 DOI: 10.3390/diagnostics11020200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Involuntary tremor at rest is observed in patients with Parkinson's disease (PD) or essential tremor (ET). Electromyography (EMG) studies have shown that phase displacement between antagonistic muscles at prevalent tremor frequency can accurately differentiate resting tremor in PD from that detected in ET. Currently, phase evaluation is qualitative in most cases. The aim of this study is to develop and validate a new mobile tool for the automated and quantitative characterization of phase displacement (resting tremor pattern) in ambulatory clinical settings. A new low-cost, wearable mobile device, called µEMG, is described, based on low-end instrumentation amplifiers and simple digital signal processing (DSP) capabilities. Measurements of resting tremor characteristics from this new device were compared with standard EMG. A good level of agreement was found in a sample of 21 subjects (14 PD patients with alternating resting tremor pattern and 7 ET patients with synchronous resting tremor pattern). Our results demonstrate that tremor analysis using µEMG is easy to perform and it can be used in routine clinical practice for the automated quantification of resting tremor patterns. Moreover, the measurement process is handy and operator-independent.
Collapse
Affiliation(s)
- Basilio Vescio
- Biotecnomed S.C.aR.L., 88100 Catanzaro, Italy; (B.V.); (A.A.)
| | - Rita Nisticò
- Neuroimaging Unit, Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), 88100 Catanzaro, Italy;
| | | | - Andrea Quattrone
- Institute of Neurology, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Marianna Crasà
- Neuroscience Research Center, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Aldo Quattrone
- Neuroimaging Unit, Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), 88100 Catanzaro, Italy;
- Neuroscience Research Center, Magna Græcia University, 88100 Catanzaro, Italy;
| |
Collapse
|