1
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Wu W, Zhu L, Dou Z, Hou Q, Wang S, Yuan Z, Li B. Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies. Curr Issues Mol Biol 2024; 46:948-964. [PMID: 38275675 PMCID: PMC10813987 DOI: 10.3390/cimb46010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin-GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin's protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin's multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field.
Collapse
Affiliation(s)
- Wei Wu
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Sen Wang
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Bin Li
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| |
Collapse
|
3
|
Wang J, Liu D, Xie Y. GHRL as a prognostic biomarker correlated with immune infiltrates and progression of precancerous lesions in gastric cancer. Front Oncol 2023; 13:1142017. [PMID: 37469414 PMCID: PMC10353738 DOI: 10.3389/fonc.2023.1142017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Objective Ghrelin is a protein that regulate appetite and energy balance in the human body, which is encoded by the ghrelin prepropeptide gene (GHRL). GHRL is linked with carcinogenesis and immune regulation. However, the correlation of GHRL to prognosis and tumor-infiltrating lymphocytes in gastric cancer (GC) remains unclear. Methods In this study, we assessed the transcriptional expression, prognosis, and different clinicopathological features about GHRL and the correlation between GHRL and tumor infiltration immune cells in GC patients based on the data published in the following databases: TIMER, GEPIA, GEO, STRING, UALCAN, TISIDB, and Kaplan-Meier Plotter. Furthermore, R software analysis for GC Correa' cascade was also provided. Finally, GHRL expression in GC tissues was assayed using quantitative real-time polymerase chain reaction and immunohistochemistry. Results We found that GHRL expression in GC samples was lower than in normal samples and verified by quantitative PCR (qPCR) and immunohistochemistry. However, sample type, cancer stage, and worse survival were correlated to high GHRL expression. We also found that the expression of GHRL in dysplasia was significantly lower than that in CNAG and in GC. High GHRL expression was connected with immunomodulators, chemokines, and infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in GC. Conclusions GHRL is a prognostic biomarker for GC patients, and it is correlated with progression of precancerous lesions in GC. It might lead to poor prognosis by regulating tumor immune microenvironment. Studies are important to explore therapeutic targeting GHRL in the future.
Collapse
|
4
|
Qiao ZW, Jiang Y, Wang L, Wang L, Jiang J, Zhang JR, Mu P. LINC00852 promotes the proliferation and invasion of ovarian cancer cells by competitively binding with miR-140-3p to regulate AGTR1 expression. BMC Cancer 2021; 21:1004. [PMID: 34496800 PMCID: PMC8424870 DOI: 10.1186/s12885-021-08730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) has been identified in ovarian cancer. However, the expression and biological functions of LINC00852 in ovarian cancer are not understood. Methods The expressions of LINC00852, miR-140-3p and AGTR1 mRNA in ovarian cancer tissues and cells were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Gain- and loss-of-function assays were performed to explore the biological functions of LINC00852 and miR-140-3p in the progression of ovarian cancer in vitro. The bindings between LINC00852 and miR-140-3p were confirmed by luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. Results We found that LINC00852 expression was significantly up-regulated in ovarian cancer tissues and cells, whereas miR-140-3p expression was significantly down-regulated in ovarian cancer tissues. Functionally, LINC00852 knockdown inhibited the viability, proliferation and invasion of ovarian cancer cells, and promoted the apoptosis of ovarian cancer cells. Further investigation showed that LINC00852 interacted with miR-140-3p, and miR-140-3p overexpression suppressed the viability, proliferation and invasion of ovarian cancer cells. In addition, miR-140-3p interacted with AGTR1 and negatively regulated its level in ovarian cancer cells. Mechanistically, we found that LINC00852 acted as a ceRNA of miR-140-3p to promote AGTR1 expression and activate MEK/ERK/STAT3 pathway. Finally, LINC00852 knockdown inhibited the growth and invasion ovarian cancer in vivo. Conclusion LINC00852/miR-140-3p/AGTR1 is an important pathway to promote the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Zhi-Wei Qiao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ying Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ling Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Lei Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing-Ru Zhang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| | - Peng Mu
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
5
|
Zhang F, Yin Y, Xu W, Zhou Z, Sun X, Li P. Apatinib combined with Keytruda treatment induces apoptosis of gastric carcinoma cells through CES4/miR-616-5p/DUSP2 axis. Basic Clin Pharmacol Toxicol 2021; 129:345-356. [PMID: 34365722 DOI: 10.1111/bcpt.13641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023]
Abstract
Gastric carcinoma (GC) is a highly malignant and heterogeneous tumour. Long non-coding RNA CES4 is down-regulated in GC. However, whether CES4 can participate in GC remains unclear; we have carried out research on this topic. GC cells (HGC-27 and MKN-7) were treated with anti-tumour drugs: apatinib combined with Keytruda. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry. Gene and protein expression were examined by quantitative real-time PCR and western blot. Luciferase reporter assay was performed to verify the relationship among CES4, miR-616-5p and dual-specificity phosphatase-2 (DUSP2). CES4 was highly expressed in the apatinib combined with Keytruda-treated HGC-27 and MKN-7 cells. Apatinib combined with Keytruda treatment repressed cell viability and promoted apoptosis of HGC-27 and MKN-7 cells, which was abrogated by CES4 knockdown. Furthermore, CES4 promoted DUSP2 expression by sponging miR-616-5p in HGC-27 and MKN-7 cells. CES4 knockdown promoted cell viability and inhibited apoptosis of drug-treated HGC-27 and MKN-7 cells by regulating miR-616-5p/DUSP2 axis. In conclusion, these data demonstrate that apatinib combined with Keytruda treatment induces apoptosis of GC cells through CES4/miR-616-5p/DUSP2 axis. Thus, this work provides the experimental basis for the combination of apatinib and Keytruda as a treatment for GC.
Collapse
Affiliation(s)
- Fengli Zhang
- Department of Traditional Chinese and Western Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanfen Yin
- Department of Oncology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Wenwen Xu
- The Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Zhou Zhou
- Department of Traditional Chinese and Western Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Department of Traditional Chinese and Western Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Department of Traditional Chinese and Western Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Spiridon IA, Ciobanu DGA, Giușcă SE, Căruntu ID. Ghrelin and its role in gastrointestinal tract tumors (Review). Mol Med Rep 2021; 24:663. [PMID: 34296307 PMCID: PMC8335721 DOI: 10.3892/mmr.2021.12302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ghrelin, an orexigenic hormone, is a peptide that binds to the growth hormone secretagogue receptor; it is secreted mainly by enteroendocrine cells in the oxyntic glands of the stomach. Ghrelin serves a role in both local and systemic physiological processes, and is implicated in various pathologies, including neoplasia, with tissue expression in several types of malignancies in both in vitro and in vivo studies. However, the precise implications of the ghrelin axis in metastasis, invasion and cancer progression regulation has yet to be established. In the case of gastrointestinal (GI) tract malignancies, ghrelin has shown potential to become a prognostic factor or even a therapeutic target, although data in the literature are inconsistent and unsystematic, with reports untailored to a specific histological subtype of cancer or a particular localization. The evaluation of immunohistochemical expression shows a limited outlook owing to the low number of cases analyzed, and in vivo analyses have conflicting data regarding differences in ghrelin serum levels in patients with cancer. The aim of this review was to examine the relationship between ghrelin and GI tract malignancies to demonstrate the inconsistencies in current results and to highlight its clinical significance in the outcome of these patients.
Collapse
Affiliation(s)
- Irene Alexandra Spiridon
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | | | - Simona Eliza Giușcă
- Department of Pathology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| | - Irina Draga Căruntu
- Department of Histology, 'Grigore T. Popa' University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|
7
|
Zhang X, Ma H, Zou Q, Wu J. Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Front Cell Dev Biol 2020; 8:620164. [PMID: 33365314 PMCID: PMC7750425 DOI: 10.3389/fcell.2020.620164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the expression of cyclin-dependent kinase 1 (CDK1) in gastric cancer (GC), evaluate its relationship with the clinicopathological features and prognosis of GC, and analyze the advantage of CDK1 as a potential independent prognostic factor for GC. METHODS The Cancer Genome Atlas (TCGA) data and corresponding clinical features of GC were collected. First, the aim gene was selected by combining five topological analysis methods, where the gene expression in paracancerous and GC tissues was analyzed by Limma package and Wilcox test. Second, the correlation between gene expression and clinical features was analyzed by logistic regression. Finally, the survival analysis was carried out by using the Kaplan-Meier. The gene prognostic value was evaluated by univariate and multivariate Cox analyses, and the gene potential biological function was explored by gene set enrichment analysis (GSEA). RESULTS CDK1 was selected as one of the most important genes associated with GC. The expression level of CDK1 in GC tissues was significantly higher than that in paracancerous tissues, which was significantly correlated with pathological stage and grade. The survival rate of the CDK1 high expression group was significantly lower than that of the low expression group. CDK1 expression was significantly correlated with overall survival (OS). CDK1 expression was mainly involved in prostate cancer, small cell lung cancer, and GC and was enriched in the WNT signaling pathway and T cell receptor signaling pathway. CONCLUSION CDK1 may serve as an independent prognostic factor for GC. It is also expected to be a new target for molecular targeted therapy of GC.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Hua Ma
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|