1
|
Tunissen SAM, Smit EJ, Mikerov M, Prokop M, Sechopoulos I. Performance evaluation of a 4D similarity filter for dynamic CT angiography imaging of the liver. Med Phys 2024; 51:8814-8827. [PMID: 39264288 DOI: 10.1002/mp.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Dynamic computed tomography (CT) angiography of the abdomen provides perfusion information and characteristics of the tissues present in the abdomen. This information could potentially help characterize liver metastases. However, radiation dose has to be relatively low for the patient, causing the images to have very high noise content. Denoising methods are needed to increase image quality. PURPOSE The purpose of this study was to investigate the performance, limitations, and behavior of a new 4D filtering method, called the 4D Similarity Filter (4DSF), to reduce image noise in temporal CT data. METHODS The 4DSF averages voxels with similar time-intensity curves (TICs). Each phase is filtered individually using the information of all phases except for the one being filtered. This approach minimizes the bias toward the noise initially present in this phase. Since the 4DSF does not base similarity on spatial proximity, loss of spatial resolution is avoided. The 4DSF was evaluated on a 12-phase liver dynamic CT angiography acquisition of 52 digital anthropomorphic phantoms, each containing one hypervascular 1 cm lesion with a small necrotic core. The metrics used for evaluation were noise reduction, lesion contrast-to-noise ratio (CNR), CT number accuracy using peak-time and peak-intensity of the TICs, and resolution loss. The results were compared to those obtained by the time-intensity profile similarity (TIPS) filter, which uses the whole TIC for determining similarity, and the combination 4DSF followed by TIPS filter (4DSF + TIPS). RESULTS The 4DSF alone resulted in a median noise reduction by a factor of 6.8, which is lower than that obtained by the TIPS filter at 8.1, and 4DSF + TIPS at 12.2. The 4DSF increased the median CNR from 0. 44 to 1.85, which is less than the TIPS filter at 2.59 and 4DSF + TIPS at 3.12. However, the peak-intensity accuracy in the TICs was superior for the 4DSF, with a median intensity decrease of -34 HU compared to -88 and -50 HU for the hepatic artery when using the TIPS filter and 4DSF + TIPS, respectively. The median peak-time accuracy was inferior for the 4DSF filter and 4DSF + TIPS, with a time shift of -1 phases for the portal vein TIC compared to no shift in time when using the TIPS. The analysis of the full-width-at-half-maximum (FWHM) of a small artery showed significantly less spatial resolution loss for the 4DSF at 3.2 pixels, compared to the TIPS filter at 4.3 pixels, and 3.4 pixels for the 4DSF + TIPS. CONCLUSION The 4DSF can reduce noise with almost no resolution loss, making the filter very suitable for denoising 4D CT data for detection tasks, even in very low dose, i.e., very high noise level, situations. In combination with the TIPS filter, the noise reduction can be increased even further.
Collapse
Affiliation(s)
- Sjoerd A M Tunissen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mikhail Mikerov
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- Technical Medicine Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
2
|
Yamamoto Y, Tanabe Y, Kurata A, Yamamoto S, Kido T, Uetani T, Ikeda S, Nakano S, Yamaguchi O, Kido T. Feasibility of four-dimensional similarity filter for radiation dose reduction in dynamic myocardial computed tomography perfusion imaging. FRONTIERS IN RADIOLOGY 2023; 3:1214521. [PMID: 38105799 PMCID: PMC10722229 DOI: 10.3389/fradi.2023.1214521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Rationale and objectives We aimed to evaluate the impact of four-dimensional noise reduction filtering using a four-dimensional similarity filter (4D-SF) on radiation dose reduction in dynamic myocardial computed tomography perfusion (CTP). Materials and methods Forty-three patients who underwent dynamic myocardial CTP using 320-row computed tomography (CT) were included in the study. The original images were reconstructed using iterative reconstruction (IR). Three different CTP datasets with simulated noise, corresponding to 25%, 50%, and 75% reduction of the original dose (300 mA), were reconstructed using a combination of IR and 4D-SF. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed, and CT-derived myocardial blood flow (CT-MBF) was quantified. The results were compared between the original and simulated images with radiation dose reduction. Results The median SNR (first quartile-third quartile) at the original, 25%-, 50%-, and 75%-dose reduced-simulated images with 4D-SF was 8.3 (6.5-10.2), 16.5 (11.9-21.7), 15.6 (11.0-20.1), and 12.8 (8.8-18.1) and that of CNR was 4.4 (3.2-5.8), 6.7 (4.6-10.3), 6.6 (4.3-10.1), and 5.5 (3.5-9.1), respectively. All the dose-reduced-simulated CTPs with 4D-SF had significantly higher image quality scores in SNR and CNR than the original ones (25%-, 50%-, and 75%-dose reduced vs. original images, p < 0.05, in each). The CT-MBF in 75%-dose reduced-simulated CTP was significantly lower than 25%-, 50%- dose-reduced-simulated, and original CTPs (vs. 75%-dose reduced-simulated images, p < 0.05, in each). Conclusion 4D-SF has the potential to reduce the radiation dose associated with dynamic myocardial CTP imaging by half, without impairing the robustness of MBF quantification.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Cardiology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Shuhei Yamamoto
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Teruyoshi Uetani
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shuntaro Ikeda
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shota Nakano
- Canon Medical Systems Corporation, Otawara, Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
3
|
Zdanowicz A, Guzinski M, Pula M, Witkowska A, Reczuch K. Dynamic CT Myocardial Perfusion: The Role of Functional Evaluation in the Diagnosis of Coronary Artery Disease. J Clin Med 2023; 12:7062. [PMID: 38002675 PMCID: PMC10672614 DOI: 10.3390/jcm12227062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary computed tomography angiography (CTA) is a widely accepted, non-invasive diagnostic modality for the evaluation of patients with suspected coronary artery disease (CAD). However, a limitation of CTA is its inability to provide information on the hemodynamic significance of the coronary lesion. The recently developed stress dynamic CT perfusion technique has emerged as a potential solution to this diagnostic challenge. Dynamic CT myocardial perfusion provides information on the hemodynamic consequences of coronary stenosis and is used to detect myocardial ischemia. The combination of stress dynamic CT myocardial perfusion with CTA provides a comprehensive assessment that integrates anatomical and functional information. CT myocardial perfusion has been validated in several clinical studies and has shown comparable accuracy to Positron Emission Tomography (PET) and stress magnetic resonance imaging (MRI) in the diagnosis of hemodynamically significant coronary stenosis and superior performance to Single Photon Emission Computed Tomography (SPECT). More importantly, CTP-derived myocardial perfusion has been shown to have a strong correlation with FFR, and the use of CTP results in a reduction of negative catheterizations. In the context of suspected stable coronary artery disease, the CT protocol with dynamic perfusion imaging combined with CTA eliminates the need for additional testing, making it a convenient "one-stop-shop" method and an effective gatekeeper to an invasive approach.
Collapse
Affiliation(s)
- Agata Zdanowicz
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Maciej Guzinski
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Michal Pula
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Square 12, 53-413 Wroclaw, Poland
| | - Agnieszka Witkowska
- Institute of Heart Diseases, University Clinical Hospital in Wroclaw, Borowska 213, 50-556 Wroclaw, Poland (K.R.)
| | - Krzysztof Reczuch
- Institute of Heart Diseases, University Clinical Hospital in Wroclaw, Borowska 213, 50-556 Wroclaw, Poland (K.R.)
- Department of Cardiology, Faculty of Medicine, Institute of Heart Diseases, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
4
|
Sliwicka O, Swiderska-Chadaj Z, Snoeren M, Brink M, Salah K, Peters-Bax L, Stille T, van Amerongen MJ, Sechopoulos I, Habets J. Multireader image quality evaluation of dynamic myocardial computed tomography perfusion imaging with a novel four-dimensional noise reduction filter. Acta Radiol 2023; 64:999-1006. [PMID: 35765201 DOI: 10.1177/02841851221108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dynamic myocardial computed tomography perfusion (CTP) is a novel technique able to depict cardiac ischemia. PURPOSE To evaluate the impact of a four-dimensional noise reduction filter (similarity filter [4D-SF]) on image quality in dynamic CTP imaging, allowing for substantial radiation dose reduction. MATERIAL AND METHODS Dynamic CTP datasets of 30 patients (16 women) with suspected coronary artery disease, acquired with a 320-slice CT system, were retrieved, reconstructed with the deep learning-based algorithm of the system (DLR), and filtered with the 4D-SF. For each case, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in six regions of interest (33-38mm2) were calculated before and after filtering, in four-chamber and short-axis views, and t-tested. Furthermore, six radiologists of different expertise evaluated subjective image preference by answering five visual grading analysis-type questions (regarding acceptable level of noise, absence of artifacts, natural appearance, cardiac contour sharpness, diagnostic acceptability) using a 5-point scale. The results were analyzed using visual grade characteristics (VGC) and intraclass correlation coefficient (ICC). RESULTS Mean SNR in four-chamber view (unfiltered vs. filtered) were: septum=4.1 ± 2.1 versus 7.6 ± 5.6; lateral wall=4.5 ± 2.0 versus 8.0 ± 4.9; CNRseptum=16.6 ± 8.9 versus 31.7 ± 28; lateral wall=16.2 ± 8.9 versus 31.3 ± 28.9. Similar results were obtained in short-axis view. The perceived filtered image quality indicated decreased noise (VGCAUC=0.96) and artifacts (0.65), improved natural appearance (0.59), cardiac contour sharpness (0.74), and diagnostic acceptability (0.78). The inter-observer variability was excellent (ICC=0.79). All results were statistically significant (P < 0.05). CONCLUSION Similarity filtering after DLR improves image quality, possibly enabling dose reduction in dynamic CTP imaging in patient with suspected chronic coronary syndrome.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Miranda Snoeren
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique Brink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Khibar Salah
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth Peters-Bax
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tip Stille
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Murayama K, Smit EJ, Prokop M, Ikeda Y, Fujii K, Nakahara I, Hanamatsu S, Katada K, Ohno Y, Toyama H. A Bayesian estimation method for cerebral blood flow measurement by area-detector CT perfusion imaging. Neuroradiology 2023; 65:65-75. [PMID: 35851924 DOI: 10.1007/s00234-022-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Bayesian estimation with advanced noise reduction (BEANR) in CT perfusion (CTP) could deliver more reliable cerebral blood flow (CBF) measurements than the commonly used reformulated singular value decomposition (rSVD). We compared the efficacy of CBF measurement by CTP using BEANR and rSVD, evaluating both relative to N-isopropyl-p-[(123) I]- iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT) as a reference standard, in patients with cerebrovascular disease. METHODS Thirty-one patients with suspected cerebrovascular disease underwent both CTP on a 320 detector-row CT system and SPECT. We applied rSVD and BEANR in the ischemic and contralateral regions to create CBF maps and calculate CBF ratios from the ischemic side to the healthy contralateral side (CBF index). The analysis involved comparing the CBF index between CTP methods and SPECT using Pearson's correlation and limits of agreement determined with Bland-Altman analyses, before comparing the mean difference in the CBF index between each CTP method and SPECT using the Wilcoxon matched pairs signed-rank test. RESULTS The CBF indices of BEANR and 123I-IMP SPECT were significantly and positively correlated (r = 0.55, p < 0.0001), but there was no significant correlation between the rSVD method and SPECT (r = 0.15, p > 0.05). BEANR produced smaller limits of agreement for CBF than rSVD. The mean difference in the CBF index between BEANR and SPECT differed significantly from that between rSVD and SPECT (p < 0.001). CONCLUSIONS BEANR has a better potential utility for CBF measurement in CTP than rSVD compared to SPECT in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan.
| | - Ewoud J Smit
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Yoshihiro Ikeda
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Ichiro Nakahara
- Department of Comprehensive Strokology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Kazuhiro Katada
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| |
Collapse
|
6
|
Møller MB, Schuijf JD, Oyama-Manabe N, Linde JJ, Kühl JT, Lima JAC, Kofoed KF. Technical Considerations for Dynamic Myocardial Computed Tomography Perfusion as Part of a Comprehensive Evaluation of Coronary Artery Disease Using Computed Tomography. J Thorac Imaging 2023; 38:54-68. [PMID: 36044617 DOI: 10.1097/rti.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dynamic myocardial computed tomography perfusion (DM-CTP) has good diagnostic accuracy for identifying myocardial ischemia as compared with both invasive and noninvasive reference standards. However, DM-CTP has not yet been implemented in the routine clinical examination of patients with suspected or known coronary artery disease. An important hurdle in the clinical dissemination of the method is the development of the DM-CTP acquisition protocol and image analysis. Therefore, the aim of this article is to provide a review of critical parameters in the design and execution of DM-CTP to optimize each step of the examination and avoid common mistakes. We aim to support potential users in the successful implementation and performance of DM-CTP in daily practice. When performed appropriately, DM-CTP may support clinical decision making. In addition, when combined with coronary computed tomography angiography, it has the potential to shorten the time to diagnosis by providing immediate visualization of both coronary atherosclerosis and its functional relevance using one single modality.
Collapse
Affiliation(s)
- Mathias B Møller
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joanne D Schuijf
- Global Research and Development Center, Canon Medical Systems Europe, Zoetermeer, The Netherlands
| | - Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jesper J Linde
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Jørgen T Kühl
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joao A C Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital and School of Medicine, Baltimore, MD
| | - Klaus F Kofoed
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
- Department of Radiology, Rigshospitalet, University of Copenhagen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Niu S, Liu H, Zhang M, Wang M, Wang J, Ma J. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor. Phys Med Biol 2021; 66. [PMID: 34081027 DOI: 10.1088/1361-6560/ac0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Cerebral perfusion computed tomography (CPCT) can depict the functional status of cerebral circulation at the tissue level; hence, it has been increasingly used to diagnose patients with cerebrovascular disease. However, there is a significant concern that CPCT scanning protocol could expose patients to excessive radiation doses. Although reducing the x-ray tube current when acquiring CPCT projection data is an effective method for reducing radiation dose, this technique usually results in degraded image quality. To enhance the image quality of low-dose CPCT, we present a prior image induced diffusion tensor (PIDT) for statistical iterative reconstruction, based on the penalized weighted least-squares (PWLS) criterion, which we referred to as PWLS-PIDT, for simplicity. Specifically, PIDT utilizes the geometric features of pre-contrast scanned high-quality CT image as a structure prior for PWLS reconstruction; therefore, the low-dose CPCT images are enhanced while preserving important features in the target image. An effective alternating minimization algorithm is developed to solve the associated objective function in the PWLS-PIDT reconstruction. We conduct qualitative and quantitative studies to evaluate the PWLS-PIDT reconstruction with a digital brain perfusion phantom and patient data. With this method, the noise in the reconstructed CPCT images is more substantially reduced than that of other competing methods, without sacrificing structural details significantly. Furthermore, the CPCT sequential images reconstructed via the PWLS-PIDT method can derive more accurate hemodynamic parameter maps than those of other competing methods.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Hong Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Mengzhen Zhang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Min Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
8
|
de Knegt MC, Rossi A, Petersen SE, Wragg A, Khurram R, Westwood M, Saberwal B, Mathur A, Nieman K, Bamberg F, Jensen MT, Pugliese F. Stress myocardial perfusion with qualitative magnetic resonance and quantitative dynamic computed tomography: comparison of diagnostic performance and incremental value over coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2020:jeaa270. [PMID: 33029616 DOI: 10.1093/ehjci/jeaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Assessment of haemodynamically significant coronary artery disease (CAD) using cardiovascular magnetic resonance (CMR) imaging perfusion or dynamic stress myocardial perfusion imaging by computed tomography (CT perfusion) may aid patient selection for invasive coronary angiography (ICA). We evaluated the diagnostic performance and incremental value of qualitative CMR perfusion and quantitative CT perfusion complementary to cardiac computed tomography angiography (CCTA) for the diagnosis of haemodynamically significant CAD using fractional flow reserve (FFR) and quantitative coronary angiography (QCA) as reference standard. METHODS AND RESULTS CCTA, qualitative visual CMR perfusion, visual CT perfusion, and quantitative relative myocardial blood flow (CT-MBF) were performed in patients with stable angina pectoris. FFR was measured in coronary vessels with stenosis visually estimated between 30% and 90% diameter reduction on ICA. Haemodynamically significant CAD was defined as FFR <0.80, or QCA ≥80% in those cases where FFR could not be performed. A total of 218 vessels from 93 patients were assessed. An optimal cut-off of 0.72 for relative CT-MBF was determined. The diagnostic performances (area under the receiver-operating characteristics curves, 95% CI) of visual CMR perfusion (0.84, 0.77-0.90) and relative CT-MBF (0.86, 0.81-0.92) were comparable and outperformed visual CT perfusion (0.64, 0.57-0.71). In combination with CCTA ≥50%, CCTA + visual CMR perfusion (0.91, 0.86-0.96), CCTA + relative CT-MBF (0.92, 0.88-0.96), and CCTA + visual CT perfusion (0.82, 0.75-0.90) improved discrimination compared with CCTA alone (all P < 0.05). CONCLUSION Visual CMR perfusion and relative CT-MBF outperformed visual CT perfusion and provided incremental discrimination compared with CCTA alone for the diagnosis of haemodynamically significant CAD.
Collapse
Affiliation(s)
- Martina C de Knegt
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Alexia Rossi
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Steffen E Petersen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Andrew Wragg
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Ruhaid Khurram
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mark Westwood
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Bunny Saberwal
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Anthony Mathur
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| | - Koen Nieman
- Department of Radiology and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Magnus T Jensen
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Kildegaardsvej 28, 2900 Hellerup, Denmark
| | - Francesca Pugliese
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts NIHR Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|