1
|
Argoff CE. Central Neuropathic Pain. Continuum (Minneap Minn) 2024; 30:1381-1396. [PMID: 39445926 DOI: 10.1212/con.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article provides an approach to the assessment, diagnosis, and treatment of central neuropathic pain. LATEST DEVELOPMENTS Recent studies of the pathophysiology of central neuropathic pain, including evidence of changes in the expression of voltage-gated sodium channels and N-methyl-d-aspartate (NMDA) receptors, may provide the basis for new therapies. Other areas of current research include the role of cannabinoid-receptor activity and microglial cell activation in various animal models of central neuropathic pain. New observations regarding changes in primary afferent neuronal activity in central neuropathic pain and the preliminary observation that peripheral nerve blocks may relieve pain due to central neuropathic etiologies provide new insights into both the mechanism and treatment of central neuropathic pain. ESSENTIAL POINTS In the patient populations treated by neurologists, central neuropathic pain develops most frequently following spinal cord injury, multiple sclerosis, or stroke. A multimodal, individualized approach to the management of central neuropathic pain is necessary to optimize pain relief and may require multiple treatment trials to achieve the best outcome.
Collapse
|
2
|
Tamasauskas A, Silva-Passadouro B, Fallon N, Frank B, Laurinaviciute S, Keller S, Marshall A. Management of Central Post-Stroke Pain: Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2024:104666. [PMID: 39260808 DOI: 10.1016/j.jpain.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Central post stroke pain (CPSP) is a neuropathic pain condition prevalent in 8% to 35% of stroke patients. This systematic review and meta-analysis aimed to provide insight in the effectiveness of available pharmacological, physical, psychological, and neuromodulation intervention in reducing pain in CPSP patients (PROSPERO Registration: CRD42022371835). Secondary outcomes included mood, sleep, global impression of change, and physical responses. Data extraction included participant demographics, stroke aetiology, pain characteristics, pain reduction scores, and secondary outcome metrics. Forty two original studies were included with a total of 1451 participants. No studies providing psychological therapy to CPSP patients were identified. Twelve studies met requirements for a random-effects meta-analyses that found: pharmacological therapy to have a small effect on mean pain score (SMD = -0.36, 96.0% Confidence Interval [-0.68, -0.03], physical interventions did not show a significant effect (SMD = -0.55, [-1.28, 0.18]), and neuromodulation treatments had a moderate effect (SMD -0.64, [-1.08, -0.19]). Fourteen studies were included in proportional meta-analysis with pharmacological studies having a moderate effect (58.3% mean pain reduction, [-36.51, -80.15]), and neuromodulation studies a small effect (31.1% mean pain reduction, [-43.45, -18.76]). Sixteen studies were included in the narrative review, findings from which largely supported meta-analyses results. Duloxetine, Amitriptyline and repetitive Transcranial Magnetic Stimulation (rTMS) had the most robust evidence for their effectiveness in alleviating CPSP induced pain. Further multi-centre placebo-controlled research is needed to ascertain the effectiveness of physical therapies, such as acupuncture and virtual reality, and invasive and non-invasive neuromodulation treatments. PERSPECTIVE: This article presents a top-down and bottom-up overview of evidence for the effectiveness of different pharmacological, physical, and neuromodulation treatments of CPSP. This review could provide clinicians with a comprehensive understanding of the effectiveness and tolerability of different treatment types.
Collapse
|
3
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Chen J, Chen Z, Zhang Y, Fan X, Zhang C, Zhu J, Song C, Zhang S, Zhang D, Tang L, Li B, Yang W, Hu Q. Effective alleviation of depressive and anxious symptoms and sleep disorders in benzodiazepine-dependent patients through repetitive transcranial magnetic stimulation. Addict Biol 2024; 29:e13425. [PMID: 39051484 PMCID: PMC11270051 DOI: 10.1111/adb.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Benzodiazepine (BZD) dependence poses a significant challenge in mental health, prompting the exploration of treatments like repetitive transcranial magnetic stimulation (rTMS). This research aims to assess the impact of rTMS on alleviating symptoms of BZD dependence. A randomized control trial was employed to study 40 BZD-dependent inpatients. Their symptoms were quantified using the Hamilton Anxiety Rating Scale (HAMA), Montgomery-Åsberg Depression Rating Scale (MADRS) and Pittsburgh Sleep Quality Index (PSQI). Participants were divided into a conventional treatment group (daily diazepam with gradual tapering) with supportive psychotherapy and another group receiving the same treatment supplemented with rTMS (five weekly sessions for 2 weeks). Significant improvements were observed in both groups over baseline in MADRS, HAMA and PSQI scores at the 2nd, 4th, 8th and 12th week assessments (p < 0.05). The group receiving rTMS in addition to conventional treatment exhibited superior improvements in all measures at the 8th and 12th weeks. The addition of rTMS to conventional treatment methods for BZD dependence significantly betters the recovery in terms of depression, anxiety and sleep quality, highlighting the role of rTMS as an effective adjunct therapy.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Zixuan Chen
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Yanli Zhang
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Xiaohe Fan
- Department of PsychiatryHongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiangChina
| | - Changchun Zhang
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Jun Zhu
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Chuanfu Song
- Department of PsychiatryThe Fourth People's Hospital of WuhuWuhuChina
| | | | - Danwei Zhang
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Lijuan Tang
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Benhan Li
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| | - Weibian Yang
- Department of PsychiatryHongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiangChina
| | - Qiang Hu
- Department of PsychiatryZhenjiang Mental Health CenterZhenjiangChina
| |
Collapse
|
5
|
Zakel J, Chae J, Wilson RD. Innovations in Stroke Recovery and Rehabilitation: Poststroke Pain. Phys Med Rehabil Clin N Am 2024; 35:445-462. [PMID: 38514229 DOI: 10.1016/j.pmr.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Pain can be a significant barrier to a stroke survivors' functional recovery and can also lead to a decreased quality of life. Common pain conditions after stroke include headache, musculoskeletal pain, spasticity-related pain, complex regional pain syndrome, and central poststroke pain. This review investigates the evidence of diagnostic and management guidelines for various pain syndromes after stroke and identifies opportunities for future research to advance the field of poststroke pain.
Collapse
Affiliation(s)
- Juliet Zakel
- MetroHealth Rehabilitation Institute, MetroHealth System, Case Western Reserve University, 4229 Pearl Road, Cleveland, OH 44109, USA.
| | - John Chae
- MetroHealth Rehabilitation Institute, MetroHealth System, Case Western Reserve University, 4229 Pearl Road, Cleveland, OH 44109, USA
| | - Richard D Wilson
- MetroHealth Rehabilitation Institute, MetroHealth System, Case Western Reserve University, 4229 Pearl Road, Cleveland, OH 44109, USA
| |
Collapse
|
6
|
Cohen SP, Caterina MJ, Yang SY, Socolovsky M, Sommer C. Pain in the Context of Sensory Deafferentation. Anesthesiology 2024; 140:824-848. [PMID: 38470115 DOI: 10.1097/aln.0000000000004881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Pain that accompanies deafferentation is one of the most mysterious and misunderstood medical conditions. Prevalence rates for the assorted conditions vary considerably but the most reliable estimates are greater than 50% for strokes involving the somatosensory system, brachial plexus avulsions, spinal cord injury, and limb amputation, with controversy surrounding the mechanistic contributions of deafferentation to ensuing neuropathic pain syndromes. Deafferentation pain has also been described for loss of other body parts (e.g., eyes and breasts) and may contribute to between 10% and upwards of 30% of neuropathic symptoms in peripheral neuropathies. There is no pathognomonic test or sign to identify deafferentation pain, and part of the controversy surrounding it stems from the prodigious challenges in differentiating cause and effect. For example, it is unknown whether cortical reorganization causes pain or is a byproduct of pathoanatomical changes accompanying injury, including pain. Similarly, ascertaining whether deafferentation contributes to neuropathic pain, or whether concomitant injury to nerve fibers transmitting pain and touch sensation leads to a deafferentation-like phenotype can be clinically difficult, although a detailed neurologic examination, functional imaging, and psychophysical tests may provide clues. Due in part to the concurrent morbidities, the physical, psychologic, and by extension socioeconomic costs of disorders associated with deafferentation are higher than for other chronic pain conditions. Treatment is symptom-based, with evidence supporting first-line antineuropathic medications such as gabapentinoids and antidepressants. Studies examining noninvasive neuromodulation and virtual reality have yielded mixed results.
Collapse
Affiliation(s)
- Steven P Cohen
- Departments of Anesthesiology, Neurology, Physical Medicine and Rehabilitation, Psychiatry and Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Departments of Physical Medicine and Rehabilitation and Anesthesiology, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Michael J Caterina
- Neurosurgery Pain Research Institute and Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Su-Yin Yang
- Psychology Service, Woodlands Health, and Adjunct Faculty, Lee Kong Chian School of Medicine, Singapore
| | - Mariano Socolovsky
- Department of Neurosurgery, University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Cheng CJ, Yu HB. Global trends and development of acupuncture for stroke: A review and bibliometric analysis. Medicine (Baltimore) 2024; 103:e36984. [PMID: 38241541 PMCID: PMC10798747 DOI: 10.1097/md.0000000000036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
The objective of this review is to elaborate on the status, hotspots, and trends of researches on acupuncture for stroke over the past 26 years. Publications about acupuncture for stroke were downloaded from the Web of Science Core Collection, and these papers were published up to December 31, 2022. A bibliometric analysis of acupuncture for stroke was conducted by CiteSpace (6.2.R4) and VOSviewer (1.6.17). In this study, VOSviewer was used for visual analysis of countries, institutions, authors, journals, keywords, and co-cited references. CiteSpace was used to draw a keyword burst map and a co-cited reference burst map. A total of 534 papers were obtained from the Web of Science Core Collection. The number of papers per year showed a rapid upward trend. The most productive country and institution in this field were China (452) and the Fujian University of Traditional Chinese Medicine (43), respectively. Tao Jing had the highest number of articles (34), and EZ Longa was the most popular author (129 co-citations). Neural Regeneration Research (51) was the most productive journal, and Stroke (1346) was the most co-cited journal. An paper written by EZ Longa was the most influential reference, with the highest citation count. The hotspots and frontiers of this area of research were focused on the mechanisms of acupuncture, especially its neural regenerative or neuroprotective effects. This study used CiteSpace and VOSviewer for bibliometric analysis to provide researchers with information on the research status, hotspots, and trends in acupuncture for stroke research over the past 26 years.
Collapse
Affiliation(s)
- Chang-Jiang Cheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hai-Bo Yu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
8
|
Lekoubou A, Nguyen C, Kwon M, Nyalundja AD, Agrawal A. Post-stroke Everything. Curr Neurol Neurosci Rep 2023; 23:785-800. [PMID: 37837566 DOI: 10.1007/s11910-023-01308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW This review aims at providing updates on selected post-stroke complications. We examined recent advances in diagnosing and treating the following post-stroke complications: cognitive impairment, epilepsy, depression, fatigue, tremors, dysphagia, and pain. RECENT FINDINGS Advances in understanding the mechanisms of post-stroke complications, in general, are needed despite advances made in understanding, treating, and preventing these complications. There are growing progresses in integrating new tools to diagnose post-stroke cognitive impairment. The potential role of acute stroke reperfusion treatment in post-stroke epilepsy and its impact on other stroke complications is getting more transparent. Post-stroke depression remains underestimated and new tools to diagnose depression after stroke are being developed. New promising pharmacological approaches to treating post-stroke pain are emerging. Tremors related to stroke are poorly understood and under-evaluated, while treatment towards post-stroke dysphagia has benefited from new non-pharmacological to pharmacological approaches. CONCLUSIONS An integrative approach to stroke complications and collaborations between providers across specialties are more likely to improve stroke outcomes.
Collapse
Affiliation(s)
- Alain Lekoubou
- Department of Neurology, Penn State University, Hershey Medical Center, Hershey, PA, USA.
| | - Clever Nguyen
- Department of Neurology, Penn State University, Hershey Medical Center, Hershey, PA, USA
| | - Michelle Kwon
- Department of Neurology, Penn State University, Hershey Medical Center, Hershey, PA, USA
| | - Arsene Daniel Nyalundja
- Faculty of Medicine, Center for Tropical Diseases and Global Health (CTDGH), Université Catholique de Bukavu (UCB), Bukavu, Democratic Republic of Congo
| | - Ankita Agrawal
- College of Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| |
Collapse
|
9
|
Chun H, Shin WC, Kim JM, Kim H, Cho JH, Song MY, Chung WS. Visual bibliometric analysis of electroacupuncture research in stroke treatment: a 20-year overview. Front Neurosci 2023; 17:1265854. [PMID: 37901432 PMCID: PMC10600454 DOI: 10.3389/fnins.2023.1265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Electroacupuncture has been used as a treatment; however, a visual bibliometric analysis has not yet been performed in this field. In this study, we aimed to suggest future research topics and directions related to the field by examining the last 20 years of research trends and hotspots of electroacupuncture in stroke. Methods We searched the Web of Science database on electroacupuncture as a treatment for stroke published from 2003 to 2022. We analyzed the papers by annual publication, research fields, nations, affiliations, authors, journals, and keywords. VOSviewer software was used to visualize the bibliometric analysis and results. A total of 440 papers were included in the analysis. Results The number of publications has gradually increased every year, and neuroscience has become the most actively studied field. Neural Regeneration Research journal and China had the most publications. Fujian University of Traditional Chinese Medicine, as an affiliated institute, published the most articles. Chen Lidian and Tao Jing presented the largest number of papers, making them the leading contributors in this field. Four clusters were created by analyzing keywords, such as "neuroprotection," "clinical rehabilitation," "neuroplasticity," and "pretreatment-induced tolerance". Conclusion This study is the first to analyze the research trends in electroacupuncture as a treatment for stroke using the VOSviewer. It shows the current state of research in the field by visualizing research trends and hotspots. This will help offer reference data for future studies.
Collapse
Affiliation(s)
- Hyonjun Chun
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Dong-shin Korean Medicine Hospital, Seoul, Republic of Korea
| | - Woo-Chul Shin
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jong-min Kim
- Department of Oriental Neuropsychiatry, Dong-Seo Medical Center, Seoul, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Won-Seok Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
10
|
Cheng Y, Wu B, Huang J, Chen Y. Research Progress on the Mechanisms of Central Post-Stroke Pain: A Review. Cell Mol Neurobiol 2023; 43:3083-3098. [PMID: 37166685 DOI: 10.1007/s10571-023-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
Central Post-Stroke Pain (CPSP) is a primary sequelae of stroke that can develop in the body part corresponding to the cerebrovascular lesion after stroke, most typically after ischemic stroke but also after hemorrhagic stroke. The pathogenesis of CPSP is currently unknown, and research into its mechanism is ongoing. To summarize current research on the CPSP mechanism and provide guidance for future studies. Use "central post-stroke pain," "stroke AND thalamic pain," "stroke AND neuropathic pain," "post-stroke thalamic pain" as the search term. The search was conducted in the PubMed and China National Knowledge Infrastructure databases, summarizing and classifying the retrieved mechanism studies. The mechanistic studies on CPSP are extensive, and we categorized the included mechanistic studies and summarized them in terms of relevant pathway studies, relevant signals and receptors, relevant neural tissues, and described endoplasmic reticulum stress and other relevant studies, as well as summarized the mechanisms of acupuncture treatment. Studies have shown that the pathogenesis of CPSP involves the entire spinal-thalamo-cortical pathway and that multiple substances in the nervous system are involved in the formation and development of CPSP. Among them, the relevant receptors and signals are the hotspot of research, and the discovery and exploration of different receptors and signals have provided a wide range of therapeutic ideas for CPSP. As a very effective treatment, acupuncture is less studied regarding the analgesic mechanism of CPSP, and further experimental studies are still needed.
Collapse
Affiliation(s)
- Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China.
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| | - Yameng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 88 Changling Road, Tianjin, 300381, China
- Tianjin University of Traditional Chinese Medicine, 88 Changling Road, Tianjin, 301617, China
| |
Collapse
|
11
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Yang R, Xiong B, Wang M, Wu Y, Gao Y, Xu Y, Deng H, Pan W, Wang W. Gamma Knife surgery and deep brain stimulation of the centromedian nucleus for chronic pain: A systematic review. Asian J Surg 2023; 46:3437-3446. [PMID: 37422388 DOI: 10.1016/j.asjsur.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
Chronic pain has been a major problem in personal quality of life and social economy, causing psychological disorders in people and a larger amount of money loss in society. Some targets were adopted for chronic pain, but the efficacy of the CM nucleus for pain was still unclear. A systematic review was performed to summarize GK surgery and DBS of the CM nucleus for chronic pain. PubMed, Embase and Medline were searched to review all studies discussing GK surgery and DBS on the CM nucleus for chronic pain. Studies that were review, meet, conference, not English or not the therapy of pain were excluded. Demographic characteristics, surgery parameters and outcomes of pain relief were selected. In total, 101 patients across 12 studies were included. The median age of most patients ranged from 44.3 to 80 years when the duration of pain ranged from 5 months to 8 years. This review showed varied results of 30%-100% pain reduction across studies. The difference in the effect between GK surgery and DBS cannot be judged. Moreover, three retrospective articles related to GK surgery of the CM nucleus for trigeminal neuralgia presented an average pain relief rate of 34.6-82.5%. Four studies reported adverse effects in a small number of patients. GK surgery and DBS of the CM nucleus might be promising therapeutic approaches for chronic refractory pain. More rigorous studies and larger samples with longer follow-up periods are needed to support the effectiveness and safety.
Collapse
Affiliation(s)
- Ruiqing Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
13
|
Li W, Chen S. Acupuncture for thalamic pain after stroke: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33006. [PMID: 36862907 PMCID: PMC9981437 DOI: 10.1097/md.0000000000033006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of acupuncture on thalamic pain after stroke. METHODS The self-established database was searched from 8 Chinese and English databases to June 2022, and the randomized controlled trials articles on the comparative treatment of thalamic pain after stroke with acupuncture were included. That visual analog scale, present pain intensity score, pain rating index, the total efficiency, and adverse reactions were mainly used to evaluate the outcomes. RESULTS A total of 11 papers were included. Meta-analysis showed that acupuncture appeared to be more effective than drugs for treatment of thalamic pain, as assessed by the visual analog scale [mean difference (MD) = -1.06, 95% confidence interval (CI) (-1.20, -0.91), P < .00001], the present pain intensity score [MD = -0.27, 95% CI (-0.43, -0.11), P = .001], the pain rating index [MD = -1.02, 95% CI (-1.41, -0.63), P < .00001], and the total efficiency [risk ratio = 1.31, 95% CI (1.22,1.41), P < .00001]. Meta-analysis results show that there is no significant difference in safety between acupuncture and drug therapy [risk ratio = 0.50, 95% CI (0.30,0.84), P = .009]. CONCLUSION Studies have shown that acupuncture in the treatment of thalamic pain is effective, and it does not prove to have a higher safety than drug treatment, therefore a large-scale multicenter randomized controlled trials study is needed to further prove.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Shaozong Chen
- Acupuncture Research Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
- * Correspondence: Shaozong Chen, Acupuncture Research Institute of Shandong University of Traditional Chinese Medicine, Jinan 250014, China (e-mail: )
| |
Collapse
|
14
|
Liang T, Chen XF, Yang Y, Yang F, Yu Y, Yang F, Wang XL, Wang JL, Sun W, Chen J. Secondary damage and neuroinflammation in the spinal dorsal horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity: SDF1-CXCR4 signaling mediation. Front Mol Neurosci 2022; 15:911476. [PMID: 36034499 PMCID: PMC9416701 DOI: 10.3389/fnmol.2022.911476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Central post-stroke pain (CPSP) is an intractable neuropathic pain, which can be caused by primary lesion of central somatosensory system. It is also a common sequelae of the thalamic hemorrhagic stroke (THS). So far, the underlying mechanisms of CPSP remain largely unknown. Our previous studies have demonstrated that SDF1-CXCR4 signaling in the hemorrhagic region contributes to the maintenance of the THS pain hypersensitivity via mediation of the thalamic neuroinflammation. But whether the spinal dorsal horn, an initial point of spinothalamic tract (STT), suffers from retrograde axonal degeneration from the THS region is still unknown. In this study, neuronal degeneration and loss in the spinal dorsal horn were detected 7 days after the THS caused by intra-thalamic collagenase (ITC) injection by immunohistochemistry, TUNEL staining, electron microscopy, and extracellular multi-electrode array (MEA) recordings, suggesting the occurrence of secondary apoptosis and death of the STT projecting neuronal cell bodies following primary THS via retrograde axonal degeneration. This retrograde degeneration was accompanied by secondary neuroinflammation characterized by an activation of microglial and astrocytic cells and upregulation of SDF1-CXCR4 signaling in the spinal dorsal horn. As a consequence, central sensitization was detected by extracellular MEA recordings of the spinal dorsal horn neurons, characterized by hyperexcitability of both wide dynamic range and nociceptive specific neurons to suprathreshold mechanical stimuli. Finally, it was shown that suppression of spinal neuroinflammation by intrathecal administration of inhibitors of microglia (minocycline) and astrocytes (fluorocitrate) and antagonist of CXCR4 (AMD3100) could block the increase in expression levels of Iba-1, GFAP, SDF1, and CXCR4 proteins in the dorsal spinal cord and ameliorate the THS-induced bilateral mechanical pain hypersensitivity, implicating that, besides the primary damage at the thalamus, spinal secondary damage and neuroinflammation also play the important roles in maintaining the central post-THS pain hypersensitivity. In conclusion, secondary neuronal death and neuroinflammation in the spinal dorsal horn can be induced by primary thalamic neural damage via retrograde axonal degeneration process. SDF1-CXCR4 signaling is involved in the mediation of secondary spinal neuroinflammation and THS pain hypersensitivity. This finding would provide a new therapeutic target for treatment of CPSP at the spinal level.
Collapse
Affiliation(s)
- Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Pain Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- Wei Sun,
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- *Correspondence: Jun Chen, ,
| |
Collapse
|
15
|
Ri S. The Management of Poststroke Thalamic Pain: Update in Clinical Practice. Diagnostics (Basel) 2022; 12:1439. [PMID: 35741249 PMCID: PMC9222201 DOI: 10.3390/diagnostics12061439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Poststroke thalamic pain (PS-TP), a type of central poststroke pain, has been challenged to improve the rehabilitation outcomes and quality of life after a stroke. It has been shown in 2.7-25% of stroke survivors; however, the treatment of PS-TP remains difficult, and in majority of them it often failed to manage the pain and hypersensitivity effectively, despite the different pharmacotherapies as well as invasive interventions. Central imbalance, central disinhibition, central sensitization, other thalamic adaptative changes, and local inflammatory responses have been considered as its possible pathogenesis. Allodynia and hyperalgesia, as well as the chronic sensitization of pain, are mainly targeted in the management of PS-TP. Commonly recommended first- and second-lines of pharmacological therapies, including traditional medications, e.g., antidepressants, anticonvulsants, opioid analgesics, and lamotrigine, were more effective than others. Nonpharmacological interventions, such as transcranial magnetic or direct current brain stimulations, vestibular caloric stimulation, epidural motor cortex stimulation, and deep brain stimulation, were effective in some cases/small-sized studies and can be recommended in the management of therapy-resistant PS-TP. Interestingly, the stimulation to other areas, e.g., the motor cortex, periventricular/periaqueductal gray matter, and thalamus/internal capsule, showed more effect than the stimulation to the thalamus alone. Further studies on brain or spinal stimulation are required for evidence.
Collapse
Affiliation(s)
- Songjin Ri
- Department for Neurology, Meoclinic, Berlin, Friedrichstraße 71, 10117 Berlin, Germany;
- Department of Neurology, Charité University Hospital (CBS), 12203 Berlin, Germany
- Outpatient Clinic for Neurology, Manfred-von-Richthofen-Straße 15, 12101 Berlin, Germany
| |
Collapse
|
16
|
Guo S, Zhang X, Tao W, Zhu H, Hu Y. Long-term follow-up of motor cortex stimulation on central poststroke pain in thalamic and extrathalamic stroke. Pain Pract 2022; 22:610-620. [PMID: 35686377 DOI: 10.1111/papr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the long-term effects of motor cortex stimulation (MCS) on central poststroke pain (CPSP) in patients with thalamic and extrathalamic stroke. MATERIALS AND METHODS We retrospectively analyzed 21 cases of CPSP patients who were treated with MCS. Pain intensity was evaluated using the visual analog scale (VAS) and Neuropathic Pain Symptom Inventory (NPSI) before the operation and at follow-up assessments. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). RESULTS The average follow-up time was 65.43 ± 26.12 months. In the thalamus stroke group (n = 11), the mean preoperative VAS score was 8.18 ± 0.75 and the final mean follow-up VAS score was 4.0 ± 2.14. The mean total NPSI score at the last follow-up (20.45 ± 12.7) was significantly reduced relative to the pre-MCS score (30.27 ± 8.97, p < 0.001). Similarly, the mean PSQI value at the last follow-up (12.63 ± 1.91) was significantly reduced compared with the pre-MCS value (16.55 ± 1.97, p < 0.001). In the extrathalamic stroke group (n = 11), the mean preoperative VAS score was 8.2 ± 0.79 and the final mean follow-up VAS score was 6.6 ± 2.12. The mean total NPSI score before MCS was not statistically different from that at the last follow-up. There were no statistical differences in sleep quality before versus after surgery. CONCLUSION Motor cortex stimulation has higher long-term efficacy in CPSP patients with stroke confined to the thalamus than in CPSP patients with stroke involving extrathalamic structures.
Collapse
Affiliation(s)
- Song Guo
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Zhang
- Department of Neurosurgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Hongwei Zhu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Central Neuropathic Pain Syndromes: Current and Emerging Pharmacological Strategies. CNS Drugs 2022; 36:483-516. [PMID: 35513603 DOI: 10.1007/s40263-022-00914-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/31/2022]
Abstract
Central neuropathic pain is caused by a disease or lesion of the brain or spinal cord. It is difficult to predict which patients will develop central pain syndromes after a central nervous system injury, but depending on the etiology, lifetime prevalence may be greater than 50%. The resulting pain is often highly distressing and difficult to treat, with no specific treatment guidelines currently available. This narrative review discusses mechanisms contributing to central neuropathic pain, and focuses on pharmacological approaches for managing common central neuropathic pain conditions such as central post-stroke pain, spinal cord injury-related pain, and multiple sclerosis-related neuropathic pain. Tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors, and gabapentinoids have some evidence for efficacy in central neuropathic pain. Medications from other pharmacologic classes may also provide pain relief, but current evidence is limited. Certain non-pharmacologic approaches, neuromodulation in particular, may be helpful in refractory cases. Emerging data suggest that modulating the primary afferent input may open new horizons for the treatment of central neuropathic pain. For most patients, effective treatment will likely require a multimodal therapy approach.
Collapse
|
18
|
Publication Trends in Rehabilitative Effects of Acupuncture: A Visual Analysis of the Literature. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7705256. [PMID: 35449821 PMCID: PMC9017514 DOI: 10.1155/2022/7705256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
Objectives To conduct a comprehensive analysis of scientific outputs in 2011–2021 regarding the rehabilitative effects of acupuncture on diseases. Methods The study was conducted in the form of knowledge graph and data visualization, with data being drawn from the Web of Science Core Collection database. Results Articles and reviews were the dominant types; China, Guangzhou University of Chinese Medicine and Medicine ranked was the active country, institution, and journal, respectively, in terms of issued articles. Systematic reviews and the meta-analyses of stroke and pain were extensively carried out in the past decade, whose principal interventions were manual acupuncture, electroacupuncture, scalp acupuncture, and dry needling correspondingly at Baihui (DU20) and Zusanli (ST36). And most frequently utilized rehabilitation assessment criteria were the Fugl-Meyer Assessment Scale and the Barthel Index. More recently, motor function and chronic obstructive pulmonary disease have captured researchers' attention, which might be the futuristic frontier. Conclusions This article provided a relatively panoramic picture of the scientific outputs in acupuncture for disease rehabilitation, which may help readers embrace the heated topic and grasp the recent research focus on this field.
Collapse
|
19
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
20
|
Petropoulos IN, Bitirgen G, Ferdousi M, Kalteniece A, Azmi S, D'Onofrio L, Lim SH, Ponirakis G, Khan A, Gad H, Mohammed I, Mohammadi YE, Malik A, Gosal D, Kobylecki C, Silverdale M, Soran H, Alam U, Malik RA. Corneal Confocal Microscopy to Image Small Nerve Fiber Degeneration: Ophthalmology Meets Neurology. FRONTIERS IN PAIN RESEARCH 2022; 2:725363. [PMID: 35295436 PMCID: PMC8915697 DOI: 10.3389/fpain.2021.725363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain has multiple etiologies, but a major feature is small fiber dysfunction or damage. Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can image small nerve fibers in the cornea and has been utilized to show small nerve fiber loss in patients with diabetic and other neuropathies. CCM has comparable diagnostic utility to intraepidermal nerve fiber density for diabetic neuropathy, fibromyalgia and amyloid neuropathy and predicts the development of diabetic neuropathy. Moreover, in clinical intervention trials of patients with diabetic and sarcoid neuropathy, corneal nerve regeneration occurs early and precedes an improvement in symptoms and neurophysiology. Corneal nerve fiber loss also occurs and is associated with disease progression in multiple sclerosis, Parkinson's disease and dementia. We conclude that corneal confocal microscopy has good diagnostic and prognostic capability and fulfills the FDA criteria as a surrogate end point for clinical trials in peripheral and central neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gulfidan Bitirgen
- Department of Ophthalmology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom.,Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Sze Hway Lim
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | | | - Adnan Khan
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ibrahim Mohammed
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Ayesha Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - David Gosal
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Kobylecki
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Monty Silverdale
- Department of Neurology, Salford Royal National Health System (NHS) Foundation Trust, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Clinical Sciences Centre, Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital National Health System (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Faculty of Biology, Medicine and Health, University of Manchester, Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
21
|
Lin N, Mandel D, Chuck CC, Kalagara R, Doelfel SR, Zhou H, Dandapani H, Mahmoud LN, Stretz C, Mac Grory BC, Wendell LC, Thompson BB, Furie KL, Mahta A, Reznik ME. Risk Factors for Opioid Utilization in Patients with Intracerebral Hemorrhage. Neurocrit Care 2021; 36:964-973. [PMID: 34931281 DOI: 10.1007/s12028-021-01404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Headache is a common presenting symptom of intracerebral hemorrhage (ICH) and often necessitates treatment with opioid medications. However, opioid prescribing patterns in patients with ICH are not well described. We aimed to characterize the prevalence and risk factors for short and longer-term opioid use in patients with ICH. METHODS We conducted a retrospective cohort study using data from a single-center registry of patients with nontraumatic ICH. This registry included data on demographics, ICH-related characteristics, and premorbid, inpatient, and postdischarge medications. After excluding patients who died or received end-of-life care, we used multivariable regression models adjusted for premorbid opioid use to determine demographic and ICH-related risk factors for inpatient and postdischarge opioid use. RESULTS Of 468 patients with ICH in our cohort, 15% (n = 70) had premorbid opioid use, 53% (n = 248) received opioids during hospitalization, and 12% (n = 53) were prescribed opioids at discharge. The most commonly used opioids during hospitalization were fentanyl (38%), oxycodone (30%), morphine (26%), and hydromorphone (7%). Patients who received opioids during hospitalization were younger (univariate: median [interquartile range] 64 [53.5-74] vs. 76 [67-83] years, p < 0.001; multivariable: odds ratio [OR] 0.96 per year, 95% confidence interval [CI] 0.94-0.98) and had larger ICH volumes (univariate: median [interquartile range] 10.1 [2.1-28.6] vs. 2.7 [0.8-9.9] cm3, p < 0.001; multivariable: OR 1.05 per cm3, 95% CI 1.03-1.08) than those who did not receive opioids. All patients who had external ventricular drain placement and craniotomy/craniectomy received inpatient opioids. Additional risk factors for increased inpatient opioid use included infratentorial ICH location (OR 4.8, 95% CI 2.3-10.0), presence of intraventricular hemorrhage (OR 3.9, 95% CI 2.2-7.0), underlying vascular lesions (OR 3.0, 95% CI 1.1-8.1), and other secondary ICH etiologies (OR 7.5, 95% CI 1.7-32.8). Vascular lesions (OR 4.0, 95% CI 1.3-12.5), malignancy (OR 5.0, 95% CI 1.5-16.4), vasculopathy (OR 10.0, 95% CI 1.8-54.2), and other secondary etiologies (OR 7.2, 95% CI 1.8-29.9) were also risk factors for increased opioid prescriptions at discharge. Among patients who received opioid prescriptions at discharge, 43% (23 of 53) continued to refill their prescriptions at 3 months post discharge. CONCLUSIONS Inpatient opioid use in patients with ICH is common, with some risk factors that may be mechanistically connected to primary headache pathophysiology. However, the lower frequency of opioid prescriptions at discharge suggests that inpatient opioid use does not necessarily lead to a high rate of long-term opioid dependence in patients with ICH.
Collapse
Affiliation(s)
- Nelson Lin
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Daniel Mandel
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Carlin C Chuck
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | | | - Savannah R Doelfel
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Helen Zhou
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Hari Dandapani
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Leana N Mahmoud
- Department of Pharmacy, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Brown University, 593 Eddy St, APC 712, Providence, RI, USA
| | - Christoph Stretz
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Brian C Mac Grory
- Department of Neurology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Linda C Wendell
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Bradford B Thompson
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Karen L Furie
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Ali Mahta
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA
| | - Michael E Reznik
- Department of Neurology, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA. .,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Zang Y, Zhang Y, Lai X, Yang Y, Guo J, Gu S, Zhu Y. Repetitive Transcranial Magnetic Stimulation for Neuropathic Pain on the Non-Motor Cortex: An Evidence Mapping of Systematic Reviews. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3671800. [PMID: 34745280 PMCID: PMC8570850 DOI: 10.1155/2021/3671800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study was aimed to summarize and analyze the quality of the available evidence in systematic reviews (SRs) of repetitive transcranial magnetic stimulation (rTMS) on the non-motor cortex (non-M1) for neuropathic pain (NP) through an evidence mapping approach. METHODS We follow the Global Evidence Mapping (GEM) methodology. Searches were conducted in PubMed, EMBASE, Epistemonikos, and the Cochrane Library. The study type was restricted to SRs with or without meta-analysis. All literature published before January 23, 2021, were included. The methodological quality of the included SRs was assessed using A Measurement Tool to Assess Systematic Reviews (AMSTAR-2). Data were extracted according to a defined population-intervention-comparison-outcome (PICO) framework from primary studies that included SRs. The same PICO was categorized into PICOs according to interventions (stimulation target, frequency, number of sessions (short: 1-5 sessions, medium: 5-10 sessions, and long: >10 sessions)) and comparison (sham rTMS or other targets). The evidence mapping was presented in tables and a bubble plot. RESULTS A total of 23 SRs were included. According to the AMSTAR-2, 20 SRs scored "very low" in terms of methodological quality, 2 SRs scored "low," and 1 SR scored "high." A total of 17 PICOs were extracted. The dorsolateral prefrontal cortex (DLPFC) is the most studied of the non-motor cortex targets. PICOs of DLPFC, premotor cortex (PMC), frontal cortex, and secondary somatosensory cortex (S2) were mainly categorized with a "potentially better" conclusion. High-frequency (5-20 Hz) rTMS of non-M1 usually lead to "potentially better" conclusions. CONCLUSIONS DLPFC, PMC, frontal cortex, and S2 seem to be promising new targets for rTMS treatment of certain NP. Evidence mapping is a useful and reliable methodology to identify and present the existing evidence gap that more research efforts are necessary in order to highlight the optimal stimulation protocols for non-M1 targets and standardize parameters to fill the evidence gaps of rTMS. Further investigation is advised to improve the methodological quality and the reporting process of SRs.
Collapse
Affiliation(s)
- Yaning Zang
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongni Zhang
- School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Xigui Lai
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yujie Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiabao Guo
- Department of Rehabilitation Medicine, The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Gu
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Yi Zhu
- Department of Musculoskeletal Pain Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Betancur DFA, Tarragó MDGL, Torres ILDS, Fregni F, Caumo W. Central Post-Stroke Pain: An Integrative Review of Somatotopic Damage, Clinical Symptoms, and Neurophysiological Measures. Front Neurol 2021; 12:678198. [PMID: 34484097 PMCID: PMC8416310 DOI: 10.3389/fneur.2021.678198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/02/2021] [Indexed: 01/26/2023] Open
Abstract
Introduction: The physiopathology of central post-stroke pain (CPSP) is poorly understood, which may contribute to the limitations of diagnostic and therapeutic advancements. Thus, the current systematic review was conducted to examine, from an integrated perspective, the cortical neurophysiological changes observed via transcranial magnetic stimulation (TMS), focusing on the structural damage, and clinical symptoms in patients with CPSP. Methods: The literature review included the databases EMBASE, PubMed, and ScienceDirect using the following search terms by MeSH or Entree descriptors: [("Cerebral Stroke") AND ("Pain" OR "Transcranial Magnetic Stimulation") AND ("Transcranial Magnetic Stimulation")] (through September 29, 2020). A total of 297 articles related to CPSP were identified. Of these, only four quantitatively recorded cortical measurements. Results: We found four studies with different methodologies and results of the TMS measures. According to the National Institutes of Health (NIH) guidelines, two studies had low methodological quality and the other two studies had satisfactory methodological quality. The four studies compared the motor threshold (MT) of the stroke-affected hemisphere with the unaffected hemisphere or with healthy controls. Two studies assessed other cortical excitability measures, such as cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). The main limitations in the interpretation of the results were the heterogeneity in parameter measurements, unknown cortical excitability measures as potential prognostic markers, the lack of a control group without pain, and the absence of consistent and validated diagnosis criteria. Conclusion: Despite the limited number of studies that prevented us from conducting a meta-analysis, the dataset of this systematic review provides evidence to improve the understanding of CPSP physiopathology. Additionally, these studies support the construction of a framework for diagnosis and will help improve the methodological quality of future research in somatosensory sequelae following stroke. Furthermore, they offer a way to integrate dysfunctional neuroplasticity markers that are indirectly assessed by neurophysiological measures with their correlated clinical symptoms.
Collapse
Affiliation(s)
- Daniel Fernando Arias Betancur
- Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Pain & Neuromodulation, Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Iraci Lucena da Silva Torres
- Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics, and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Wolnei Caumo
- Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Pain & Neuromodulation, Clinical Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Surgery, School of Medicine, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|