1
|
Chen L, Mou X, Li J, Li M, Ye C, Gao X, Liu X, Ma Y, Xu Y, Zhong Y. Alterations in gut microbiota and host transcriptome of patients with coronary artery disease. BMC Microbiol 2023; 23:320. [PMID: 37924005 PMCID: PMC10623719 DOI: 10.1186/s12866-023-03071-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses. RESULTS Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and performed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leveraging the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, and Monoglobus. CONCLUSIONS Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.
Collapse
Affiliation(s)
- Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanting Mou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caijie Ye
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofei Gao
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Liu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Department of Biomedical Informatics, Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325101, Zhejiang, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Han S, DiBlasi E, Monson ET, Shabalin A, Ferris E, Chen D, Fraser A, Yu Z, Staley M, Callor WB, Christensen ED, Crockett DK, Li QS, Willour V, Bakian AV, Keeshin B, Docherty AR, Eilbeck K, Coon H. Whole-genome sequencing analysis of suicide deaths integrating brain-regulatory eQTLs data to identify risk loci and genes. Mol Psychiatry 2023; 28:3909-3919. [PMID: 37794117 PMCID: PMC10730410 DOI: 10.1038/s41380-023-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Recent large-scale genome-wide association studies (GWAS) have started to identify potential genetic risk loci associated with risk of suicide; however, a large portion of suicide-associated genetic factors affecting gene expression remain elusive. Dysregulated gene expression, not assessed by GWAS, may play a significant role in increasing the risk of suicide death. We performed the first comprehensive genomic association analysis prioritizing brain expression quantitative trait loci (eQTLs) within regulatory regions in suicide deaths from the Utah Suicide Genetic Risk Study (USGRS). 440,324 brain-regulatory eQTLs were obtained by integrating brain eQTLs, histone modification ChIP-seq, ATAC-seq, DNase-seq, and Hi-C results from publicly available data. Subsequent genomic analyses were conducted in whole-genome sequencing (WGS) data from 986 suicide deaths of non-Finnish European (NFE) ancestry and 415 ancestrally matched controls. Additional independent USGRS suicide deaths with genotyping array data (n = 4657) and controls from the Genome Aggregation Database were explored for WGS result replication. One significant eQTL locus, rs926308 (p = 3.24e-06), was identified. The rs926308-T is associated with lower expression of RFPL3S, a gene important for neocortex development and implicated in arousal. Gene-based analyses performed using Sherlock Bayesian statistical integrative analysis also detected 20 genes with expression changes that may contribute to suicide risk. From analyzing publicly available transcriptomic data, ten of these genes have previous evidence of differential expression in suicide death or in psychiatric disorders that may be associated with suicide, including schizophrenia and autism (ZNF501, ZNF502, CNN3, IGF1R, KLHL36, NBL1, PDCD6IP, SNX19, BCAP29, and ARSA). Electronic health records (EHR) data was further merged to evaluate if there were clinically relevant subsets of suicide deaths associated with genetic variants. In summary, our study identified one risk locus and ten genes associated with suicide risk via gene expression, providing new insight into possible genetic and molecular mechanisms leading to suicide.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Emily DiBlasi
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric T Monson
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey Shabalin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elliott Ferris
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Danli Chen
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Staley
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - W Brandon Callor
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Erik D Christensen
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - David K Crockett
- Clinical Analytics, Intermountain Health, Salt Lake City, UT, USA
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Virginia Willour
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Amanda V Bakian
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brooks Keeshin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Anna R Docherty
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Dai Y, Chen D, Xu T. DNA Methylation Aberrant in Atherosclerosis. Front Pharmacol 2022; 13:815977. [PMID: 35308237 PMCID: PMC8927809 DOI: 10.3389/fphar.2022.815977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.
Collapse
|
4
|
Xiang B, Deng C, Qiu F, Li J, Li S, Zhang H, Lin X, Huang Y, Zhou Y, Su J, Lu M, Ma Y. Single cell sequencing analysis identifies genetics-modulated ORMDL3 + cholangiocytes having higher metabolic effects on primary biliary cholangitis. J Nanobiotechnology 2021; 19:406. [PMID: 34872583 PMCID: PMC8647381 DOI: 10.1186/s12951-021-01154-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is highly influenced by genetic determinants. Many genome-wide association studies (GWAS) have reported that numerous genetic loci were significantly associated with PBC susceptibility. However, the effects of genetic determinants on liver cells and its immune microenvironment for PBC remain unclear. RESULTS We constructed a powerful computational framework to integrate GWAS summary statistics with scRNA-seq data to uncover genetics-modulated liver cell subpopulations for PBC. Based on our multi-omics integrative analysis, 29 risk genes including ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. By combining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited a notable enrichment by PBC-related genetic association signals (Permuted P < 0.05). The risk gene of ORMDL3 showed the highest expression proportion in cholangiocytes than other liver cells (22.38%). The ORMDL3+ cholangiocytes have prominently higher metabolism activity score than ORMDL3- cholangiocytes (P = 1.38 × 10-15). Compared with ORMDL3- cholangiocytes, there were 77 significantly differentially expressed genes among ORMDL3+ cholangiocytes (FDR < 0.05), and these significant genes were associated with autoimmune diseases-related functional terms or pathways. The ORMDL3+ cholangiocytes exhibited relatively high communications with macrophage and monocyte. Compared with ORMDL3- cholangiocytes, the VEGF signaling pathway is specific for ORMDL3+ cholangiocytes to interact with other cell populations. CONCLUSIONS To the best of our knowledge, this is the first study to integrate genetic information with single cell sequencing data for parsing genetics-influenced liver cells for PBC risk. We identified that ORMDL3+ cholangiocytes with higher metabolism activity play important immune-modulatory roles in the etiology of PBC.
Collapse
Affiliation(s)
- Bingyu Xiang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chunyu Deng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Fei Qiu
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Shanshan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Huifang Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiuli Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yijun Zhou
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
5
|
Zorkoltseva I, Shadrina A, Belonogova N, Kirichenko A, Tsepilov Y, Axenovich T. In silico genome-wide gene-based association analysis reveals new genes predisposing to coronary artery disease. Clin Genet 2021; 101:78-86. [PMID: 34687547 DOI: 10.1111/cge.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Genome-wide association study (GWAS) have identified more than 300 single nucleotide polymorphisms at 163 independent loci associated with coronary artery disease (CAD). However, there is no full understanding about the causal genes for CAD and the mechanisms of their action. We aimed to perform a post GWAS analysis to identify genes whose polymorphism may influence the risk of CAD. Using the UK Biobank GWAS summary statistics, we performed a gene-based association analysis. We found 63 genes significantly associated with CAD due to their within-gene polymorphisms. Many of these genes are well known. Some known CAD genes such as FURIN and SORT1 did not show the gene-based association because their variants had low GWAS signals or gene-based association was inflated by the strong GWAS signal outside the gene. For several known CAD genes, we demonstrated that their effects could be explained not only or not at all by their own variants but by the variants within the neighboring genes controlling their expression. Using several bioinformatics techniques, we suggested potential mechanisms underlying gene-CAD associations. Three genes, CDK19, NCALD, and ARHGEF12 were not previously associated with CAD. The role of these genes should be clarified in further studies.
Collapse
Affiliation(s)
- Irina Zorkoltseva
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Alexandra Shadrina
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Nadezhda Belonogova
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Anatoly Kirichenko
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Yakov Tsepilov
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana Axenovich
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|