1
|
Su G, Xu Z, Liu S, Hao D, Li Y, Pan G. Investigation of the Mechanism of SEMA5A and Its Associated Autophagy-Related Genes in Gastric Cancer. Int J Gen Med 2024; 17:4101-4117. [PMID: 39295854 PMCID: PMC11409931 DOI: 10.2147/ijgm.s471370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose Semaphorin 5A (SEMA5A) and autophagy-related genes (ARGs) are pivotal in the pathogenesis of gastric cancer (GC). However, the potential regulatory role of SEMA5A in autophagy via its associated ARGs and the underlying molecular mechanisms remain unresolved. Patients and Methods GC-related datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to identify differentially expressed genes (DEGs) between GC and control samples. The intersection of DEGs with ARGs produced candidate genes, which were further analyzed using Spearman correlation with SEMA5A to identify signature genes. Stratification of GC samples based on signature gene expression, followed by Kaplan-Meier survival analysis, identified key genes. Subsequent analyses, including gene set enrichment analysis (GSEA), immune infiltration, and immune checkpoint evaluation, were conducted on the key genes and SEMA5A. The mRNA expression level was quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Results Ninety candidate genes were identified for Spearman correlation with SEMA5A, revealing TNFSF11, BMP6, ITPR1, and DLC1 with correlation coefficients exceeding 0.3. Survival analysis underscored DLC1 and BMP6 as key genes due to significant prognostic differences. GSEA implicated SEMA5A, BMP6, and DLC1 in the ECM receptor interaction pathway. Immune infiltration analysis indicated a negative correlation of SEMA5A and BMP6 with M1 macrophages, while DLC1 exhibited the strongest association with the immune checkpoint PDCD1LG2 (p < 0.05, cor = 0.43). The mRNA expression level of SEMA5A was significantly upregulated in AGS parental cells compared to GES-1 cells (p < 0.01), whereas DLC1 and BMP6 mRNA levels were markedly downregulated in AGS parental cells relative to GES-1 (p < 0.0001). Conclusion ARGs BMP6 and DLC1, associated with SEMA5A, were identified, and their prognostic significance in GC was demonstrated. Additionally, their regulatory mechanisms were further elucidated through immune infiltration analysis and molecular network construction, providing a theoretical foundation for future research on the molecular mechanisms in patients with GC.
Collapse
Affiliation(s)
- Guomiao Su
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Zifan Xu
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Shiyue Liu
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Dou Hao
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yanxi Li
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Guoqing Pan
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Álvez MB, Edfors F, von Feilitzen K, Zwahlen M, Mardinoglu A, Edqvist PH, Sjöblom T, Lundin E, Rameika N, Enblad G, Lindman H, Höglund M, Hesselager G, Stålberg K, Enblad M, Simonson OE, Häggman M, Axelsson T, Åberg M, Nordlund J, Zhong W, Karlsson M, Gyllensten U, Ponten F, Fagerberg L, Uhlén M. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat Commun 2023; 14:4308. [PMID: 37463882 DOI: 10.1038/s41467-023-39765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
Collapse
Affiliation(s)
- María Bueno Álvez
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kalle von Feilitzen
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Zwahlen
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Lundin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Natallia Rameika
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Lindman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Hesselager
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karin Stålberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Malin Enblad
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Oscar E Simonson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael Häggman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tomas Axelsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and SciLifeLab Affinity Proteomics, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Max Karlsson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Ponten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Zafari N, Bathaei P, Velayati M, Khojasteh-Leylakoohi F, Khazaei M, Fiuji H, Nassiri M, Hassanian SM, Ferns GA, Nazari E, Avan A. Integrated analysis of multi-omics data for the discovery of biomarkers and therapeutic targets for colorectal cancer. Comput Biol Med 2023; 155:106639. [PMID: 36805214 DOI: 10.1016/j.compbiomed.2023.106639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
The considerable burden of colorectal cancer and the rising trend in young adults emphasize the necessity of understanding its underlying mechanisms, providing new diagnostic and prognostic markers, and improving therapeutic approaches. Precision medicine is a new trend all over the world and identification of novel biomarkers and therapeutic targets is a step forward towards this trend. In this context, multi-omics data and integrated analysis are being investigated to develop personalized medicine in the management of colorectal cancer. Given the large amount of data from multi-omics approach, data integration and analysis is a great challenge. In this Review, we summarize how statistical and machine learning techniques are applied to analyze multi-omics data and how it contributes to the discovery of useful diagnostic and prognostic biomarkers and therapeutic targets. Moreover, we discuss the importance of these biomarkers and therapeutic targets in the clinical management of colorectal cancer in the future. Taken together, integrated analysis of multi-omics data has great potential for finding novel diagnostic and prognostic biomarkers and therapeutic targets, however, there are still challenges to overcome in future studies.
Collapse
Affiliation(s)
- Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Elham Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Wang D, Liufu J, Yang Q, Dai S, Wang J, Xie B. Identification and validation of a novel signature as a diagnostic and prognostic biomarker in colorectal cancer. Biol Direct 2022; 17:29. [PMID: 36319976 PMCID: PMC9628086 DOI: 10.1186/s13062-022-00342-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Although marker genes associated with CRC have been identified previously, only a few have fulfilled the therapeutic demand. Therefore, based on differentially expressed genes (DEGs), this study aimed to establish a promising and valuable signature model to diagnose CRC and predict patient's prognosis. METHODS The key genes were screened from DEGs to establish a multiscale embedded gene co-expression network, protein-protein interaction network, and survival analysis. A support vector machine (SVM) diagnostic model was constructed by a supervised classification algorithm. Univariate Cox analysis was performed to construct two prognostic signatures for overall survival and disease-free survival by Kaplan-Meier analysis, respectively. Independent clinical prognostic indicators were identified, followed by univariable and multivariable Cox analysis. GSEA was used to evaluate the gene enrichment analysis and CIBERSORT was used to estimate the immune cell infiltration. Finally, key genes were validated by qPCR and IHC. RESULTS In this study, four key genes (DKC1, FLNA, CSE1L and NSUN5) were screened. The SVM diagnostic model, consisting of 4-gene signature, showed a good performance for the diagnostic (AUC = 0.9956). Meanwhile, the four-gene signature was also used to construct a risk score prognostic model for disease-free survival (DFS) and overall survival (OS), and the results indicated that the prognostic model performed best in predicting the DFS and OS of CRC patients. The risk score was validated as an independent prognostic factor to exhibit the accurate survival prediction for OS according to the independent prognostic value. Furthermore, immune cell infiltration analysis demonstrated that the high-risk group had a higher proportion of macrophages M0, and T cells CD4 memory resting was significantly higher in the low-risk group than in the high-risk group. In addition, functional analysis indicated that WNT and other four cancer-related signaling pathways were the most significantly enriched pathways in the high-risk group. Finally, qRT-PCR and IHC results demonstrated that the high expression of DKC1, CSE1L and NSUN5, and the low expression of FLNA were risk factors of CRC patients with a poor prognosis. CONCLUSION In this study, diagnosis and prognosis models were constructed based on the screened genes of DKC1, FLNA, CSE1L and NSUN5. The four-gene signature exhibited an excellent ability in CRC diagnosis and prognostic prediction. Our study supported and highlighted that the four-gene signature is conducive to better prognostic risk stratification and potential therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Di Wang
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Junye Liufu
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Qiyuan Yang
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Shengqun Dai
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China
| | - Jiaqi Wang
- Department of Gastroenterology, Guangzhou First People's Hospital, 511458, Guangzhou, P.R. China
| | - Biao Xie
- Department of Gastroenterology, People's Hospital of Longhua, NO.38 Jinglong Construction Road, Longhua District, 518109, Shenzhen, P.R. China.
| |
Collapse
|
7
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
8
|
Ahluwalia P, Mondal AK, Ahluwalia M, Sahajpal NS, Jones K, Jilani Y, Gahlay GK, Barrett A, Kota V, Rojiani AM, Kolhe R. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med 2022; 11:1573-1586. [PMID: 35137551 PMCID: PMC8921909 DOI: 10.1002/cam4.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune‐related genes using a medium‐throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four‐gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05–2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99–5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35–4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial–mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T‐reg cells, CD8+ T cells, M2 macrophages, and B cells in high‐risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yasmeen Jilani
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amyn M Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Fang Y, Yang Q. Specificity protein 1-induced serine peptidase inhibitor, Kunitz Type 1 antisense RNA1 regulates colorectal cancer cell proliferation, migration, invasion and apoptosis through targeting heparin binding growth factor via sponging microRNA-214. Bioengineered 2022; 13:3309-3322. [PMID: 35068341 PMCID: PMC8973735 DOI: 10.1080/21655979.2022.2026859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ying Fang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| | - Qianqian Yang
- Department of Gastroenterology, The Affiliated Yangming Hospital of Ningbo University, Yuyao People’s Hospital of Zhejiang Province, Yuyao, China
| |
Collapse
|
10
|
Islam S, Kitagawa T, Kuramitsu Y. High Expression of PEA15 Is Associated With Patient Survival in Malignant Pleural Mesothelioma. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:371-377. [PMID: 35403140 PMCID: PMC8988953 DOI: 10.21873/cdp.10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Malignant pleural mesothelioma (MPM) is a rare but very aggressive tumor that is primarily pleural in origin. The 5-year overall survival rate of patients with MPM has not improved despite therapeutic advances. Therefore, biomarker discovery to identify premalignant or early malignant tumors of the mesothelium are crucial. PEA15 is a cytoplasmic protein that is involved in various human malignancies, including MPM. However, the clinicopathological involvement of PEA15 in MPM has not yet been documented. MATERIALS AND METHODS The Oncomine database and GEPIA2 platform were used to analyze PEA15 mRNA expression and patient survival in patients with MPM. RESULTS PEA15 was found to be significantly up-regulated in MPM, and this up-regulation inversely correlated with prolonged patient survival. Further, PEA15 expression was found to be increased in other cancer tissues without affecting overall survival. CONCLUSION PEA15 may represent a new potential prognostic biomarker in MPM patients.
Collapse
Affiliation(s)
- Shajedul Islam
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Takao Kitagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|