1
|
Su Y, Huang J, Guo Q, Shi H, Wei M, Wang C, Zhao K, Bao T. Combined metabolomic and transcriptomic analysis reveals the characteristics of the lignan in Isatis indigotica Fortune. Gene 2023; 888:147752. [PMID: 37661029 DOI: 10.1016/j.gene.2023.147752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Isatis indigotica Fortune is a plant species containing lignan compounds of significant economic value. Its root plays a crucial role in treating viruses and exhibits antitumor, anti-inflammatory, antibacterial, and other biological activities. Now, I. indigotica has been included in Isatis tinctoria Linnaeus. In this study, the roots of diploid I. indigotica, tetraploid I. indigotica, and Isatis tinctoria Linnaeus were analyzed using metabolome and transcriptome analysis. The metabolomic analysis detected 48 lignan metabolites, including Lirioresinol A, Vladinol A, Syringaresinol, Arctigenin, Acanthoside B, and Sesamin as characteristic compounds, without significant variations among the remaining metabolites. The transcriptomic analysis identified 41 differentially expressed phenylpropanoid synthase genes, which were further analyzed for variations in lignan transcriptome profiles across different samples. RT-qPCR analysis also revealed differential genes expression related to lignan biosynthesis pathway among the three sample groups. The analysis of transcription factors showed that the AP2-EREBP family (Iin24319), MYB family (Iin24843), and WRKY family (Iin08158) displayed expression patterns similar to Iin14549. Phylogenetic analyses also indicate that Iin14549 may play a role in lignan synthesis. These transcription factor families exhibited high expression in tetraploid I. indigotica, moderate expression in diploid I. indigotica, and low expression in I. tinctoria. The findings of this study can serve as a reference for improving the quality of I. indigotica and developing germplasms with high lignan content. Additionally, these results lay a foundation for the functional characterization of UGTs in lignan biosynthesis pathway.
Collapse
Affiliation(s)
- Yong Su
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Jiabin Huang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China.
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Min Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China; China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, Guangdong Province 518000, PR China
| | - Chengxiang Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| | - Tao Bao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province 210095, PR China
| |
Collapse
|
2
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Xu T, Gao X, Li Y, Lin C, Ma P, Bai Z, Zhou J, Wu H, Cao F, Wei P. Characterization of isolated starch from Isatis indigotica Fort. root and anhydro-sugars preparation using its decoction residues. BIOMASS CONVERSION AND BIOREFINERY 2023:1-12. [PMID: 36785541 PMCID: PMC9907209 DOI: 10.1007/s13399-023-03892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Isatis indigotica Fort. root (Ban-lan-gen, IIR), a traditional Chinese medicine (TCM), has an ancient and well-documented history for its medicinal properties. Aside from epigoitrin, indole alkaloids, and their corresponding derivatives as medicinal ingredients, it also contains lots of biomass such as starch. Herein, a new starch was isolated from IIR and the physicochemical properties such as amylose content, moisture content, ash content, morphology, thermal properties, and crystallography were characterized systematically. The amylose content of IIR starch was 19.84 ± 0.85%, and the size and shape of starch granules is ellipsoidal shape with sizes from 2 to 10 μm. IIR starch exhibited a C-type pattern and had 25.92% crystallinity (higher than that of corn starch). The gelatinization temperature of IIR starch was 58.68-75.41 °C, and its gelatinization enthalpy was ΔH gel = 4.33 J/g. After decocting, the IIR's residues can be used to prepare anhydro-sugars in a polar aprotic solvent. The total carbon yield of levoglucosan (LG), levoglucosenone (LGO), 5-hydroxymethylfurfural (HMF), and furfural (FF) could reach 69.81% from IIR's decoction residues in 1,4-dioxane with 15 mM H2SO4 as the catalyst. Further, the residues after dehydration were prepared into biochar by thermochemical conversion and the BET surface area of biochar was 1749.46 m2/g which has good application prospect in soil improvement and alleviates obstacles of IIR continuous cropping.
Collapse
Affiliation(s)
- Tingting Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xin Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Yuanzhang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Changqu Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Peipei Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Zhongzhong Bai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Hongli Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Fei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
4
|
Zheng S, Xue T, Wang B, Guo H, Liu Q. Application of network pharmacology in the study of the mechanism of action of traditional chinese medicine in the treatment of COVID-19. Front Pharmacol 2022; 13:926901. [PMID: 35991891 PMCID: PMC9387999 DOI: 10.3389/fphar.2022.926901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Network pharmacology was rapidly developed based on multidisciplinary holistic analysis of biological systems, which has become a popular tool in traditional Chinese medicine (TCM) research in recent years. Its characteristics of integrity and systematization provide a new approach for the study on complex TCM systems, which has many similarities with the holistic concept of TCM. It has been widely used to explain the mechanism of TCM treatment of diseases, drug repositioning, and interpretation of compatibility of TCM prescriptions, to promote the modernization of TCM. The use of TCM have provided crucial support on prevention and treatment of diseases such as the famous “three medicines and three prescriptions”. Furthermore, TCM has become an important part of the treatment of COVID-19 and is one of the main contents of the “Chinese plan” to fight the epidemic. The current review demonstrated the role of TCM in treating diseases with multiple components, multiple targets, and multiple pathways, interprets the connotation of TCM treatment method selection based on pathogenesis and also discusses the application of network pharmacology in the study of COVID-19 treatment in TCM including single drug and prescription. However, there are still some shortcomings such as the lack of experimental verification and regular upgrading of the TCM pharmacology network. Therefore, we must pay attention to the characteristics of TCM and develop a network pharmacology method suitable for TCM system research when applying network pharmacology to TCM research.
Collapse
Affiliation(s)
- Shihao Zheng
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Tianyu Xue
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Bin Wang
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Haolin Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Qiquan Liu
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- Department of Spleen and Stomach, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qiquan Liu,
| |
Collapse
|
5
|
Zhou Y. Antistroke Network Pharmacological Prediction of Xiaoshuan Tongluo Recipe Based on Drug-Target Interaction Based on Deep Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6095964. [PMID: 35959347 PMCID: PMC9363221 DOI: 10.1155/2022/6095964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Stroke is a common cerebrovascular disease that threatens human health, and the search for therapeutic drugs is the key to treatment. New drug discovery was driven by many accidental factors in the early stage. With the deepening of research, disease-related target discovery and computer-aided drug design constitute a more rational drug discovery process. The deep learning model was constructed by using recurrent neural network, and then, the classification and prediction of compound-protein interactions were studied. In this study, the network pharmacological prediction of stroke based on deep learning is obtained. (1) In the case of discrete time, a distributed optimization algorithm with finite time convergence is applied. A distributed exact first-order algorithm for the case where the objective function is smooth. On the basis of the DGD algorithm, an additional cumulative correction term is added to correct the error caused by the fixed step size of DGD. Solve multiple optimization problems with equality constraints by using Lagrangian functions. Alternately update the original variable and the dual variable to get the solution of a large global problem. It converges to the optimal solution in an asymptotic or exponential way; that is, the node can reach the optimal solution more accurately when the time tends to infinity. (2) Deep learning, also sometimes called representation learning, has a set of algorithms that can automatically discover the desired classification or detection by feeding it into a machine using raw datasets. Multiple levels of abstraction are abstracted through the use of nonlinear models. This simplifies finding solutions to complex and nonlinear functions. Based on the automatic learning function, it provides the functions of modularization and transfer learning. Deep architectures, which usually contain hidden layers, differ from traditional machine learning, which requires a large amount of data to train the network. There are many levels of modules that are nonlinear and transform the information present on the first level into higher levels which are more abstract in nature and are basically used for feature extraction and transformation. (3) The accuracy rate of the framework based on the multitask deep learning algorithm is 91.73%, and the recall rate reaches 96.13%. The final model was predicted and analyzed using real sample data. In the inference problem, it has the advantages of fast training and low cost; in the generation problem, it also has the advantages of fast training, high stability, high diversity, and high quality of image reconstruction.
Collapse
Affiliation(s)
- Yongfu Zhou
- School of Chemistry and Pharmaceutical Engineering Chongqing Industry Polytechnic College, Chongqing 401120, China
| |
Collapse
|
6
|
Hydroalcoholic Leaf Extract of Isatis tinctoria L. via Antioxidative and Anti-Inflammatory Effects Reduces Stress-Induced Behavioral and Cellular Disorders in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3567879. [PMID: 35795852 PMCID: PMC9252841 DOI: 10.1155/2022/3567879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Stress that can occur at different levels of a person’s life can cause and exacerbate various diseases. Oxidative stress and inflammation underlie this process at the cellular level. There is an urgent need to identify new and more effective therapeutic targets for the treatment of stress-induced behavioral disorders and specific drugs that affect these targets. Isatis tinctoria L. is a herbaceous species in the Brassicaceae family. Due to its potential antioxidant, nitric oxide- (NO-) inhibiting, anti-inflammatory, and neuroprotective properties, I. tinctoria could be used to treat depression, anxiety, and stress resistance. Hence, the present study is aimed at delineating whether administration of I. tinctoria leaf extract may improve stress-induced disorders in mice. A set of four behavioral tests was selected that together are suitable for phenotyping acute restraint stress-associated behaviors in mice, namely locomotor activity, social integration, dark/light box, and splash tests. The plasma and brains were collected. A brain-derived neurotrophic factor, tumor necrosis factor-alpha, C-reactive protein, corticosterone, NO, reactive oxygen species levels, superoxide dismutase and catalase activity, and ferric-reducing antioxidant power were measured. In mice stressed by immobilization, decreased locomotor activity, anxiety-like behavior, and contact with other individuals were observed, as well as increased oxidative stress and increased levels of nitric oxide in the brain and plasma C-reactive protein. A single administration of I. tinctoria leaf extract was able to reverse the behavioral response to restraint by a mechanism partially dependent on the modulation of oxidative stress, neuroinflammation, and NO reduction. In conclusion, Isatis tinctoria hydroalcoholic leaf extract can reduce stress-induced behavioral disturbances by regulating neurooxidative, neuronitrosative, and neuroimmune pathways. Therefore, it could be recommended for further research on clinical efficacy in depression and anxiety disorder treatment.
Collapse
|
7
|
Adenosine and L-proline can possibly hinder Chinese Sacbrood virus infection in honey bees via immune modulation. Virology 2022; 573:29-38. [PMID: 35691116 DOI: 10.1016/j.virol.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Sacbrood virus (SBV) infects larvae of honey bees, resulting in infected larvae becoming fluid-filled sacs. Our previous studies showed that the extract of herbal medicine, Radix Isatidis, could inhibit Chinese SBV (CSBV) infection in Asian honey bees (Apis cerana). Here, two compounds, adenosine and L-proline, which were previously reported to be associated with immune modulation, were identified in R. Isatidis extract and then selected for an evaluation of their antiviral effect on CSBV infection in A. cerana. Our results revealed that both adenosine and L-proline could significantly mitigate the impact of CSBV on the growth and development of infected larvae and modulate hosts' immune responses by downregulating the expression of immune genes in infected larvae. The results gained from this study suggest that adenosine and L-proline could possibly interfere CSBV infection via immune modulation to avoid exacerbations and nonspecific damage to infected larvae's own tissues.
Collapse
|
8
|
Ren L, Li Q, Li H, Zhan X, Yang R, Li Z, Fang Z, Liu T, Wei Z, Zhao J, Lin L, Mou W, Dai W, Bai Z, Xu G, Cao J. Polysaccharide extract from Isatidis Radix inhibits multiple inflammasomes activation and alleviate gouty arthritis. Phytother Res 2022; 36:3295-3312. [PMID: 35666808 DOI: 10.1002/ptr.7514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023]
Abstract
The polysaccharide extract from Isatidis Radix exhibits potent antiinflammatory and antiviral activities, but the mechanism of Isatidis Radix polysaccharide (IRP) remains obscure. Herein, we reported that IRP blocked the activation of nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, leading to the inhibiting of caspase-1 cleavage and IL-1β secretion. Mechanistically, IRP did not inhibit NLRP3 inflammasome through suppressing mitochondrial reactive oxygen species (mtROS) production. However, IRP can significantly suppress the oligomerization of apoptosis-associated speck-like protein (ASC) and subsequently block the formation of inflammasome. Next, we evaluate the role of IRP in monosodium urate (MSU)-induced gout in vivo which is a NLRP3-associated disease. We also observed that oral administration of IRP can reduce the increased ankle thickness and the secretion of IL-1β, IL-18, IL-6, TNF-α and MPO of the mouse ankle joints caused by MSU crystals. Furthermore, flow cytometry analysis highlighted a significant modulation of T helper 17 cells (Th17)/regulatory T cells (Treg) following IRP treatment in MSU induced gout. Overall, our findings suggest that IRP has comprehensive and potent antiinflammatory effects and provide a reasonable therapeutic strategy in preventing inflammasome-associated diseases, such as inflammatory gouty arthritis.
Collapse
Affiliation(s)
- Lutong Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhie Fang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Bahoosh SR, Shokoohinia Y, Eftekhari M. Glucosinolates and their hydrolysis products as potential nutraceuticals to combat cytokine storm in SARS-COV-2. DARU : JOURNAL OF FACULTY OF PHARMACY, TEHRAN UNIVERSITY OF MEDICAL SCIENCES 2022; 30:245-252. [PMID: 35112323 PMCID: PMC8809497 DOI: 10.1007/s40199-022-00435-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The high mortality rate in severe cases of COVID-19 is mainly due to the strong upregulation of cytokines, called a cytokine storm. Hyperinflammation and multiple organ failure comprise the main clinical features of a cytokine storm. Nrf2 is a transcription factor which regulates the expression of genes involved in immune and inflammatory processes. Furthermore, Nrf2, as a master regulator, controls the activity of NF-κB which binds to the promoter of many pro-inflammatory genes inducible of various inflammatory factors. Inhibition of Nrf2 response was recently demonstrated in biopsies from patients with COVID-19, and Nrf2 agonists inhibited SARS-CoV-2 replication across cell lines in vitro. Glucosinolates and their hydrolysis products have excellent anti-inflammatory and antioxidant effects via the Nrf2 activation pathway, reduction in the NF-κB activation, and subsequent reduced cytokines levels. CONCLUSION Accordingly, these compounds can be helpful in combating the cytokine storm associated with COVID-19.
Collapse
Affiliation(s)
- Saba Rahimi Bahoosh
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Ric Scalzo Institute for Botanical Research, Southwest College of Naturopathic Medicine, Tempe, AZ, 85282, USA
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, 6715847141, Kermanshah, Iran. .,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, P.O.BOX.6714415153, Kermanshah, Iran.
| |
Collapse
|
10
|
Shao Y, Chen H, Lin H, Feng H, Gong J, Cao G, Hong W, Yao Y, Zou H, Yan Y. Exploration on Varying Patterns of Morphological Features and Quality of Armeniacae Semen Amarum in Rancid Process Based on Colorimeter, Electronic Nose, and GC/MS Coupled With Human Panel. Front Pharmacol 2022; 13:599979. [PMID: 35592420 PMCID: PMC9110824 DOI: 10.3389/fphar.2022.599979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the domestic and international trade volumes of Chinese medicinal materials (CMMs) keep increasing. By the end of 2019, the total amount of exported CMMs reached as high as US $1.137 billion, while imported was US $2.155 billion. A stable and controllable quality system of CMMs apparently becomes the most important issue, which needs multifaceted collaboration from harvesting CMMs at a proper season to storing CMMs at a proper temperature. However, due to imperfect storage conditions, different kinds of deteriorations are prone to occur, for instance, get moldy or rancid, which not only causes a huge waste of CMM resources but also poses a great threat to clinical medication safety and public health. The key issue is to quickly and accurately distinguish deteriorated CMM samples so as to avoid consuming low-quality or even harmful CMMs. However, some attention has been paid to study the changing quality of deteriorated CMMs and a suitable method for identifying them. In this study, as a medicine and food material which easily becomes rancid, armeniacae semen amarum (ASA) was chosen as a research objective, and experimental ASA samples of different rancidness degrees were collected. Then, various kinds of analytical methods and technologies were applied to explore the changing rules of ASA quality and figure out the key indicators for the quality evaluation of ASA in the rancid process, including the human panel, colorimeter, electronic nose, and GC/MS. This study aims to analyze the correlation between the external morphological features and the inner chemical compounds, to find out the specific components from "quantitative change" to "qualitative change" in the process of "getting rancid," and to discover the dynamic changes in the aforementioned key indicators at different stages of rancidness. The results showed since ASA samples began to get rancid with the extension of storage time, morphological features, namely, surface color and smell, changed significantly, and the degree of rancidness further deepened at the same time. Based on macroscopic identification accomplished via the human panel, ASA samples with varying degrees of rancidness were divided into four groups. The result of colorimeter analysis was in agreement with that of the human panel, as well as the determination of the amygdalin content and peroxide value. Moreover, there were obvious differences in the amygdalin content and peroxide value among ASA samples with different rancidness degrees. With a higher degree of rancidness, the content of amygdalin decreased, while the peroxide value increased significantly. The rancidness degree of ASA has a negative correlation with the amygdalin content and a positive correlation with the peroxide value. The newly discovered nonanal and 2-bromopropiophenone in rancid ASA samples may be the key components of "rancidity smell," and these two components would be the exclusive components that trigger "quantitative change" to "qualitative change" in the process of rancidness of ASA. This study sheds light on studying the internal mechanism of "rancidness" of CMMs and provides an important basis for the effective storage and safe medication of easy-to-get rancid herbs, and it also plays an important foundation for the establishment of a stable and controllable quality system for CMMs.
Collapse
Affiliation(s)
- Yuanyang Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huirong Chen
- Clinical Study Department, Beijing Highthink Pharmaceutical Technology Service Co., Ltd., Beijing, China
| | - Hongxin Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huishang Feng
- Department of Dermatology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jianting Gong
- Chinese Medicine Resource Research Center, Beijing Institute of Clinical Pharmacy, Beijing, China
| | - Guangzhao Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Hong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuebao Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huiqin Zou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Taylor-Swanson L, Altschuler D, Taromina K, Anderson B, Bensky D, Cohen M, Huang H, Ma S, Majd I, Mitchell C, Schnyer RN, Conboy L. SEAttle-based Research of Chinese Herbs for COVID-19 Study: A Whole Health Perspective on Chinese Herbal Medicine for Symptoms that may be Related to COVID-19. Glob Adv Health Med 2022; 11:21649561211070483. [PMID: 35096490 PMCID: PMC8793385 DOI: 10.1177/21649561211070483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction East Asian Medicine (EAM) is a Whole System medicine that includes Chinese herbal medicine (CHM). Chinese herbal medicine has been utilized to reduce symptom burden in infectious disease, with notable theoretical reformulations during pandemics of the 3rd, 13th, and 17th centuries. Today, Licensed Acupuncturists trained in CHM have utilized it to treat symptoms and sequelae of COVID-19. However, little is known about its use or efficacy by the public and health practitioners. Understanding and evaluating whole medicine systems of healthcare is inherently complex; there is international consensus for a descriptive, pragmatic approach. We are conducting a feasibility pilot study using a prospective, pragmatic, observational design using Whole Health and Whole Person perspectives. The complexity of COVID-19 reflects the impact on multiple homeoregulatory systems and provides a unique opportunity to assess the impact of interventions such as EAM on whole health. Observation of these EAM encounters will provide valuable qualitative and quantitative data on the interface of an extant Whole System medicine with a novel complex illness as a precursor to a randomized clinical trial. Methods This ongoing study observes a CHM clinic offering telehealth consultations to a diverse patient population since April, 2020. Patients who report symptoms potentially related to COVID-19 disease are consented for standardized collection and analysis of demographic and clinical data from each clinical encounter. Results To date, 61 patients engaged in 195 consultations (mean 3.3) with 49 reporting symptom resolution sufficient to complete treatment, and 4 withdrawals. Just over half (62%) were female, with an average age of 45.7 years. A wide variety of CHM formulas and EAM dietary and lifestyle modifications were provided. Discussion Adequate recruitment and retention suggest feasibility of the intervention and data collection. The rich dataset may facilitate the construction of Whole Health models of CHM’s clinical impact, as well as integrative inquiry into CHM’s effects on symptoms.
Collapse
Affiliation(s)
| | | | | | - Belinda Anderson
- College of Health Professions, Pace University, One Pace Plaza, New York, NY, USA
| | - Daniel Bensky
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | - Misha Cohen
- California Institute of Integral Studies, ACTCM, San Francisco, CA, USA
| | - Helen Huang
- Massachusetts College of Pharmacy and Health Sciences, NESA, Worcester MA, USA
| | - Shouchun Ma
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | - Iman Majd
- Osher Center for Integrative Medicine, University of Washington, Department of Family Medicine, Seattle, WA, USA
| | - Craig Mitchell
- Seattle Institute of East Asian Medicine, Seattle, WA, USA
| | | | - Lisa Conboy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|