1
|
Du Z, Zhu XM, Lv P, Pan Y, Hou XK, Li A, Zhao D, Xing JX, Yao J. Ketamine Alters Specific Gene Expression Profiles by Transcriptome-Wide Responses in a Ketamine-Induced Schizophrenia-Like Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04789-6. [PMID: 39992587 DOI: 10.1007/s12035-025-04789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Psychotic disorder is a significant consequence of ketamine abuse. However, the molecular mechanisms and biomarkers for this psychotic disorder and associated long-term cognitive impairment remain unclear. To investigate the behavioral changes and comprehensive gene expression alterations in mice following ketamine administration, we employed behavioral testing and RNA sequencing (RNA-seq). We further examined the role of dopamine D1 receptor (Drd1) activity in mediating ketamine-induced psychotic-like behavior and its impact on the transcriptome in these mice. Our findings indicated that blocking Drd1 activity with an antagonist mitigated ketamine-induced schizophrenia-like behaviors, while activating Drd1 with an agonist partially replicated these symptoms. Transcriptome analysis of the mouse hippocampus using RNA-seq revealed an enrichment of differentially expressed genes implicated in the GTPase activation pathway. Specifically, both Rgs4 and Gnai3 were involved in ketamine-induced psychiatric effects. Furthermore, we observed that the mRNA expression of Gnai3 was decreased in peripheral blood and the serum levels of eotaxin-2 were elevated two weeks after ketamine administration. These changes suggest that Gnai3 and eotaxin-2 may serve as potential biomarkers for ketamine abuse. These results demonstrate the crucial role of Drd1 activity in a mouse model of ketamine-induced schizophrenia-like disorder. The altered expression of Gnai3 in peripheral blood and the elevated levels of cytokine eotaxin-2 in serum indicate their potential as peripheral blood biomarkers for ketamine abuse in mice.
Collapse
Affiliation(s)
- Zhe Du
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
- Langfang Health Vocational College, Langfang, P.R. China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
| | - Peng Lv
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
| | - Ying Pan
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
| | - Xi-Kai Hou
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
| | - Ang Li
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, P.R. China.
| | - Jia-Xin Xing
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China.
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China.
| | - Jun Yao
- School of Forensic Medicine, Shenbei New District, China Medical University, No.77, Puhe Road, Shenyang, 110122, P.R. China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Liaoning Province, Shenyang, P.R. China.
- China Medical University Center of Forensic Investigation, Shenyang, P.R. China.
| |
Collapse
|
2
|
Pu Y, Yang J, Pan Q, Li C, Wang L, Xie X, Chen X, Xiao F, Chen G. MGST3 regulates BACE1 protein translation and amyloidogenesis by controlling the RGS4-mediated AKT signaling pathway. J Biol Chem 2024; 300:107530. [PMID: 38971310 PMCID: PMC11332907 DOI: 10.1016/j.jbc.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024] Open
Abstract
Microsomal glutathione transferase 3 (MGST3) regulates eicosanoid and glutathione metabolism. These processes are associated with oxidative stress and apoptosis, suggesting that MGST3 might play a role in the pathophysiology of Alzheimer's disease. Here, we report that knockdown (KD) of MGST3 in cell lines reduced the protein level of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the resulting amyloidogenesis. Interestingly, MGST3 KD did not alter intracellular reactive oxygen species level but selectively reduced the expression of apoptosis indicators which could be associated with the receptor of cysteinyl leukotrienes, the downstream metabolites of MGST3 in arachidonic acid pathway. We then showed that the effect of MGST3 on BACE1 was independent of cysteinyl leukotrienes but involved a translational mechanism. Further RNA-seq analysis identified that regulator of G-protein signaling 4 (RGS4) was a target gene of MGST3. Silencing of RGS4 inhibited BACE1 translation and prevented MGST3 KD-mediated reduction of BACE1. The potential mechanism was related to AKT activity, as the protein level of phosphorylated AKT was significantly reduced by silencing of MGST3 and RGS4, and the AKT inhibitor abolished the effect of MGST3/RGS4 on phosphorylated AKT and BACE1. Together, MGST3 regulated amyloidogenesis by controlling BACE1 protein expression, which was mediated by RGS4 and downstream AKT signaling pathway.
Collapse
Affiliation(s)
- Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neurology, Langzhong People's Hospital, Nanchong, Sichuan, China
| | - Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, China
| | - Qiuling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chenlu Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.
| |
Collapse
|
3
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
4
|
Kanwal A, Pardo JV, Naz S. RGS3 and IL1RAPL1 missense variants implicate defective neurotransmission in early-onset inherited schizophrenias. J Psychiatry Neurosci 2022; 47:E379-E390. [PMID: 36318984 PMCID: PMC9633053 DOI: 10.1503/jpn.220070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Schizophrenia is characterized by hallucinations, delusions and disorganized behaviour. Recessive or X-linked transmissions are rarely described for common psychiatric disorders. We examined the genetics of psychosis to identify rare large-effect variants in patients with extreme schizophrenia. METHODS We recruited 2 consanguineous families, each with patients affected by early-onset, severe, treatment-resistant schizophrenia. We performed exome sequencing for all participants. We checked variant rarity in public databases and with ethnically matched controls. We performed in silico analyses to assess the effects of the variants on proteins. RESULTS Structured clinical evaluations supported diagnoses of schizophrenia in all patients and phenotypic absence in the unaffected individuals. Data analyses identified multiple variants. Only 1 variant per family was predicted as pathogenic by prediction tools. A homozygous c.649C > T:p.(Arg217Cys) variant in RGS3 and a hemizygous c.700A > G:p.(Thr234Ala) variant in IL1RAPL1 affected evolutionary conserved amino acid residues and were the most likely causes of phenotype in the patients of each family. Variants were ultra-rare in publicly available databases and absent from the DNA of 400 ethnically matched controls. RGS3 is implicated in modulating sensory behaviour in Caenorhabditis elegans. Variants of IL1RAPL1 are known to cause nonsyndromic X-linked intellectual disability with or without human behavioural dysfunction. LIMITATIONS Each variant is unique to a particular family's patients, and findings may not be replicated. CONCLUSION Our work suggests that some rare variants may be involved in causing inherited psychosis or schizophrenia. Variant-specific functional studies will elucidate the pathophysiology relevant to schizophrenias and motivate translation to personalized therapeutics.
Collapse
Affiliation(s)
- Ambreen Kanwal
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - José V Pardo
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - Sadaf Naz
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| |
Collapse
|
5
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|