Dündar A. Investigation of serum ischemic-modified albumin, galectin-3, paraoxonase-1, and myeloperoxidase activity levels in patients with acute brucellosis.
Redox Rep 2023;
28:2289727. [PMID:
38054459 PMCID:
PMC11001275 DOI:
10.1080/13510002.2023.2289727]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVES
Infection remains current as an important discussion topic in the etiological factors of atherosclerosis. Ischemic-modified albumin (IMA), galectin-3 (gal-3), paraoxonase-1 (PON-1), and myeloperoxidase (MPO) are biomolecules that play an important role in the pathogenesis of atherosclerosis. Our aim is to investigate serum IMA, gal-3, PON-1, and MPO activity in acute brucellosis infection.
MATERIALS AND METHODS
Forty patients with acute brucellosis and 40 healthy individuals were included in the study. Serum IMA, gal-3, PON-1, and MPO activity were analyzed by the ELISA method.
RESULTS
In acute brucellosis infection, serum gal-3, IMA, and MPO activities were found to be significantly increased compared to the control group, and PON-1 activity was found to be significantly decreased compared to the control group (p < 0.001). There was a positive correlation between serum IMA, and MPO activity (r = 0.707 p = 0.000) and a negative correlation (r = -0.943, p = 0.000) between PON-1 activity. There was a positive correlation between serum gal-3 and MPO activity (r = 0.683, p = 0.000) and IMA level (r = 0.927, p = 0.000) and a negative correlation between PON-1 activity (r = -0.951, p = 0.000).Conclusion, it was found that serum gal-3, IMA levels and MPO activity increased, while PON-1 activity decreased. These results showed that the oxidant-anti-oxidant balance is impaired in acute brucellosis infection. In addition, these results indicate that brucella infection may be increase the risk of atherosclerosis. Further studies are needed to support our findings.
Collapse