1
|
Hieronimus B, Ensenauer R. Influence of maternal and paternal pre-conception overweight/obesity on offspring outcomes and strategies for prevention. Eur J Clin Nutr 2021; 75:1735-1744. [PMID: 34131301 PMCID: PMC8636250 DOI: 10.1038/s41430-021-00920-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Overweight, obesity, and their comorbidities remain global health challenges. When established early in life, overweight is often sustained into adulthood and contributes to the early onset of non-communicable diseases. Parental pre-conception overweight and obesity is a risk factor for overweight and obesity in childhood and beyond. This increased risk likely is based on an interplay of genetic alterations and environmental exposures already at the beginning of life, although mechanisms are still poorly defined. In this narrative review, potential routes of transmission of pre-conceptional overweight/obesity from mothers and fathers to their offspring as well as prevention strategies are discussed. Observational evidence suggests that metabolic changes due to parental overweight/obesity affect epigenetic markers in oocytes and sperms alike and may influence epigenetic programming and reprogramming processes during embryogenesis. While weight reduction in overweight/obese men and women, who plan to become pregnant, seems advisable to improve undesirable outcomes in offspring, caution might be warranted. Limited evidence suggests that weight loss in men and women in close proximity to conception might increase undesirable offspring outcomes at birth due to nutritional deficits and/or metabolic disturbances in the parent also affecting gamete quality. A change in the dietary pattern might be more advisable. The data reviewed here suggest that pre-conception intervention strategies should shift from women to couples, and future studies should address possible interactions between maternal and paternal contribution to longitudinal childhood outcomes. Randomized controlled trials focusing on effects of pre-conceptional diet quality on long-term offspring health are warranted.
Collapse
Affiliation(s)
- Bettina Hieronimus
- Institute of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
2
|
Padhee M, Zhang S, Lie S, Wang KC, Botting KJ, McMillen IC, MacLaughlin SM, Morrison JL. The periconceptional environment and cardiovascular disease: does in vitro embryo culture and transfer influence cardiovascular development and health? Nutrients 2015; 7:1378-425. [PMID: 25699984 PMCID: PMC4377860 DOI: 10.3390/nu7031378] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Assisted Reproductive Technologies (ARTs) have revolutionised reproductive medicine; however, reports assessing the effects of ARTs have raised concerns about the immediate and long-term health outcomes of the children conceived through ARTs. ARTs include manipulations during the periconceptional period, which coincides with an environmentally sensitive period of gamete/embryo development and as such may alter cardiovascular development and health of the offspring in postnatal life. In order to identify the association between ARTs and cardiovascular health outcomes, it is important to understand the events that occur during the periconceptional period and how they are affected by procedures involved in ARTs. This review will highlight the emerging evidence implicating adverse cardiovascular outcomes before and after birth in offspring conceived through ARTs in both human and animal studies. In addition, it will identify the potential underlying causes and molecular mechanisms responsible for the congenital and adult cardiovascular dysfunctions in offspring whom were conceived through ARTs.
Collapse
Affiliation(s)
- Monalisa Padhee
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shervi Lie
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley C Wang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Severence M MacLaughlin
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
3
|
Matusiak K, Barrett HL, Callaway LK, Nitert MD. Periconception weight loss: common sense for mothers, but what about for babies? J Obes 2014; 2014:204295. [PMID: 24804085 PMCID: PMC3996361 DOI: 10.1155/2014/204295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/03/2014] [Indexed: 01/21/2023] Open
Abstract
Obesity in the childbearing population is increasingly common. Obesity is associated with increased risk for a number of maternal and neonatal pregnancy complications. Some of these complications, such as gestational diabetes, are risk factors for long-term disease in both mother and baby. While clinical practice guidelines advocate for healthy weight prior to pregnancy, there is not a clear directive for achieving healthy weight before conception. There are known benefits to even moderate weight loss prior to pregnancy, but there are potential adverse effects of restricted nutrition during the periconceptional period. Epidemiological and animal studies point to differences in offspring conceived during a time of maternal nutritional restriction. These include changes in hypothalamic-pituitary-adrenal axis function, body composition, glucose metabolism, and cardiovascular function. The periconceptional period is therefore believed to play an important role in programming offspring physiological function and is sensitive to nutritional insult. This review summarizes the evidence to date for offspring programming as a result of maternal periconception weight loss. Further research is needed in humans to clearly identify benefits and potential risks of losing weight in the months before conceiving. This may then inform us of clinical practice guidelines for optimal approaches to achieving a healthy weight before pregnancy.
Collapse
Affiliation(s)
- Kristine Matusiak
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
| | - Helen L. Barrett
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The UQ Centre for Clinical Research, The University of Queensland, RBWH Campus, Butterfield Street, Herston, QLD 4029, Australia
- The Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia
| | - Leonie K. Callaway
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia
| | - Marloes Dekker Nitert
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The UQ Centre for Clinical Research, The University of Queensland, RBWH Campus, Butterfield Street, Herston, QLD 4029, Australia
| |
Collapse
|
4
|
Abstract
Approximately 30% of pregnant women are obese (body mass index [BMI] ≥ 30) and are at risk for adverse pregnancy outcomes. In this article, we review the literature on select obstetrical risks associated with maternal obesity and assess the recommended prevention and management strategies. The selected risks include infertility, fetal anomalies, gestational hypertensive diseases, gestational diabetes, intrauterine fetal death, cesarean birth, macrosomia, and long-term risks of adult disease for the fetus. The causes of these adverse outcomes include maternal body habitus, the proinflammatory state of obesity, and metabolic dysfunction. We also discuss how nurses, nurse practitioners, and nurse-midwives can make a difference in the prenatal care and immediate pregnancy outcomes of pregnant women with obesity and influence future health for these women and their children.
Collapse
|
5
|
Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:585749. [PMID: 22203829 PMCID: PMC3235715 DOI: 10.1155/2011/585749] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 12/20/2022]
Abstract
There is a need to understand the separate or interdependent contributions of maternal prepregnancy BMI, gestational weight gain, glycaemic control, and macronutrient intake on the metabolic outcomes for the offspring. Experimental studies highlight that there may be separate influences of maternal obesity during the periconceptional period and late gestation on the adiposity of the offspring. While a period of dietary restriction in obese mothers may ablate the programming of obesity, it is associated with an activation of the stress axis in the offspring. Thus, maternal obesity may result in epigenetic changes which predict the need for efficient fat storage in postnatal life, while maternal weight loss may lead to epigenetic changes which predict later adversity. Thus, development of dietary interventions for obese mothers during the periconceptional period requires a greater evidence base which allows the effective weighing up of the metabolic benefits and costs for the offspring.
Collapse
|
6
|
McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, Morrison JL. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol 2008; 102:82-9. [PMID: 18226059 DOI: 10.1111/j.1742-7843.2007.00188.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 'developmental origins of adult health and disease' hypothesis stated that environmental factors, particularly maternal undernutrition, act in early life to programme the risks for adverse health outcomes, such as cardiovascular disease, obesity and the metabolic syndrome in adult life. Early physiological tradeoffs, including activation of the foetal hypothalamo-pituitary-adrenal (HPA) axis, confer an early fitness advantage such as foetal survival, while incurring delayed health costs. We review the evidence that such tradeoffs are anticipated from conception and that the periconceptional nutritional environment can programme the developmental trajectory of the stress axis and the systems that maintain and regulate arterial blood pressure. There is also evidence that restriction of placental growth and function, results in an increased dependence of the maintenance of arterial blood pressure on the sequential recruitment of the sympathetic nervous system and HPA axis. While the 'early origins of adult disease' hypothesis has focussed on the impact of maternal undernutrition, an increase in maternal nutritional intake and in maternal body mass intake has become more prevalent in developed countries. Exposure to overnutrition in foetal life results in a series of central and peripheral neuroendocrine responses that in turn programme development of the fat cell and of the central appetite regulatory system. While the physiological responses to foetal undernutrition result in the physiological trade off between foetal survival and poor health outcomes that emerge after reproductive senescence, exposure to early overnutrition results in poor health outcomes that emerge in childhood and adolescence. Thus, the effects of early overnutrition can directly impact on reproductive fitness and on the health of the next generation. In this context, the physiological responses to relative overnutrition in early life may directly contribute to an intergenerational cycle of obesity.
Collapse
Affiliation(s)
- I Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia.
| | | | | | | | | | | |
Collapse
|