1
|
Li Z, Wang X, Zheng D, Han F, Li Y, Zhou H, Li J, Cui W, Jiang Y, Wang X, Xie W, Tang L. Oral-Delivery Lactococcus lactis expressing cherry fusion lactoferrin peptides against infection of avian pathogenic Escherichia coli in chickens. Poult Sci 2025; 104:104637. [PMID: 39662258 PMCID: PMC11683333 DOI: 10.1016/j.psj.2024.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) infections result in significant economic losses and reduced animal welfare. Historically, antibiotics and vaccinations currently control APEC infections in poultry, however, antibiotic-resistant strains and heterologous serotypes limit their effectiveness. Meanwhile, antibiotic-resistant strains can be transmitted to humans via contact with animals, food or their environment. Probiotics and antimicrobial peptides (AMPs) are potential alternatives to antibiotics and represent promising strategies to combat APEC. Bovine lactoferricin and lactoferrampin possess anti-bacterial, anti-inflammatory, and anti-oxidant properties. Lactococcus lactis (L. lactis) is an excellent vector for delivering recombinant proteins. In this research, we generated a recombinant L. lactis strain MG1363 expressing lactoferrin peptides, which was labeled with a fluorescent marker mCherry and lacked an antibiotic resistance gene (LL-EFLmC). Our investigation focused on the impact of LL-EFLmC strain on the gut microbiota composition and avian pathogenic E. coli O78 challenge. Our findings indicate that LL-EFLmC exhibits inhibitory effects against APEC-O78 and Staphylococcus aureus CVCC26003 (S. aureus CVCC26003) in vitro. Furthermore, the inclusion of LL-EFLmC in chicken feed significantly improved the average daily intake and gain to feed ratio. Additionally, LL-EFLmC treatment resulted in a significant increase in serum IgG and intestinal mucus SIgA levels. Administration of LL-EFLmC was found to effectively suppress APEC-O78 infection and mitigate the expression of pro-inflammatory cytokines, including IL-1β, IL-12, IFN-γ, and TNF-α. Additionally, 16S rDNA sequencing data revealed that LL-EFLmC was able to restore the intestinal flora that had been disrupted by APEC-O78. These findings suggest that LL-EFLmC may serve as a promising feed additive and antibiotic alternative in chicken production, due to its potential to enhance immune regulation, promote growth, and confer resistance against APEC-O78 infection.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dianzhong Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fuzhen Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin 150030, China.
| |
Collapse
|
2
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
3
|
Huang Q, Xing J, Li G, Liu M, Gao M, Wang J, Tang F, Ren J, Zhao C, Wang X, Zhou X, Luo H, Yu Y, Zeng D, Dai J, Xue F. LCN2 regulates the gut microbiota and metabolic profile in mice infected with Mycobacterium bovis. mSystems 2024; 9:e0050124. [PMID: 39051782 PMCID: PMC11334432 DOI: 10.1128/msystems.00501-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Infection with Mycobacterium bovis precipitates a spectrum of pathologies in bovines, notably necrotic pneumonia, mastitis, and arthritis, impinging upon the health and nutritional assimilation of these animals. A pivotal factor, lipocalin 2 (Lcn2), is responsive to microbial invasion, inflammatory processes, and tissue damage, the extent of which Lcn2 modulates the gut environment, however, remains unclear in response to M. bovis-induced alterations. To explore the role of Lcn2 in shaping the gut milieu of mice during a 5-week period post-M. bovis infection, Lcn2 knockout Lcn2-/- mice were scrutinized for changes in the gut microbiota and metabolomic profiles. Results showed that Lcn2-/- mice infected with M. bovis exhibited notable shifts in the operational taxonomic units (OTUs) of gut microbiota, alongside significant disparities in α and β diversity. Concomitantly, a marked increase was observed during the 5-week period in the abundance of Akkermansia, Oscillospira, and Bacteroides, coupled with a substantial decrease in Ruminococcus within the microbiome of Lcn2 knockout mice. Notably, Akkermansia muciniphila was significantly enriched in the gut flora of Lcn2-/- mice. Furthermore, the absence of Lcn2 significantly altered the gut metabolomic landscape, evidenced by elevated levels of metabolites such as taurodeoxycholic acid, 10-undecenoic acid, azelaic acid, and dodecanedioic acid in Lcn2-/- mice. Our findings demonstrated that the lack of Lcn2 in the context of M. bovis infection profoundly affected the regulation of gut microbiota and metabolomic components, culminating in a transformed gut environment. Our results revealed that Lcn2 may regulate gut microbiota and metabolome components, changing the intestinal environment, thereby affecting the infection status of M. bovis. IMPORTANCE Our study addresses the critical knowledge gap regarding the specific influence of lipocalin 2 (LCN2) in the context of Mycobacterium bovis infection, particularly focusing on its role in the gut environment. Utilizing LCN2 knockout (Lcn2-/-) mice, we meticulously assessed changes in the gut microbiota and metabolic components following M. bovis infection. Our findings reveal alterations in the gut microbial community, emphasizing the potentially crucial role of LCN2 in maintaining stability. Furthermore, we observed significant shifts in specific microbial communities, including the enrichment of Akkermansia muciniphila, known for its positive impact on intestinal health and immune regulation. The implications of our study extend beyond understanding the dynamics of the gut microbiome, offering insights into the potential therapeutic strategies for gut-related health conditions and microbial dysbiosis.
Collapse
Affiliation(s)
- Quntao Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoli Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, China
| | - Mengting Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengtian Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingwen Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengzhu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinru Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haodong Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Youli Yu
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Dexin Zeng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Khattab RH, Abo-Hammam RH, Salah M, Hanora AM, Shabayek S, Zakeer S. Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study. BMC Microbiol 2023; 23:238. [PMID: 37644393 PMCID: PMC10464353 DOI: 10.1186/s12866-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a public health concern and the second most common disease worldwide. This is due to genetic coding and is influenced by environmental aspects, in which the gut microbiota plays a significant role. The purpose of this study was to compare the microbiota makeup of CRC patients with that of healthy control and to identify upregulated and downregulated proteins and metabolites in CRC patients. Using a next-generation sequencing approach, fecal samples of five females (4 CRC patients and one healthy control) were analyzed by BGI DNBSEQ-T7, Hong Kong, China. Furthermore, proteomics and metabolomics analysis were performed using LC-MS/MS technique. RESULTS Dysbiosis of gut microbiota has been observed in patients with CRC, with an increase in microbiota diversity at all taxonomic levels relative to healthy control. Where, at the functional level the bacterial species participate in many different pathways among them de novo nucleotide synthesis and amino acids pathways were aberrantly upregulated in CRC patients. Proteomics and metabolomics profiles of CRC patients showed different proteins and metabolites, a total of 360 and 158 proteins and metabolites, respectively were highly expressed compared to healthy control with fold change ≥ 1.2. Among the highly expressed proteins were transketolase, sushi domain-containing protein, sulfide quinone oxidoreductase protein, AAA family ATPase protein, carbonic anhydrase, IgG Fc-binding protein, nucleoside diphosphate kinase protein, arylsulfatase, alkaline phosphatase protein, phosphoglycerate kinase, protein kinase domain-containing protein, non-specific serine/threonine protein kinase, Acyl-CoA synthetase and EF-hand domain-containing protein. Some of the differential metabolites, Taurine, Taurocholic acid, 7-ketodeoxycholic acid, Glycochenodeoxycholic acid, Glycocholic acid, and Taurochenodeoxycholic acid that belong to bile acids metabolites. CONCLUSIONS Some bacterial species, proteins, and metabolites could be used as diagnostic biomarkers for CRC. Our study paves an insight into using multi-omics technology to address the relationship between gut microbiota and CRC.
Collapse
Affiliation(s)
- Randa H Khattab
- Department of Microbiology and Immunology, Al-Salam University, Tanta, Egypt
| | - Rana H Abo-Hammam
- Forensic toxicologist and narcotics expert, Ministry of Justice, Tanta, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port-Said University, Port-Said, Egypt
| | - Amro M Hanora
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Comprehensive Proteomic Profiling of Vitreous Humor in Ocular Sarcoidosis Compared with Other Vitreoretinal Diseases. J Clin Med 2022; 11:jcm11133606. [PMID: 35806888 PMCID: PMC9267904 DOI: 10.3390/jcm11133606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular sarcoidosis is an inflammatory disease that manifests as uveitis, and is often difficult to distinguish from other forms of uveitis based on nonspecific findings alone. Comprehensive proteomic analyses of vitreous humor using LC-MS/MS were performed in each patient with ocular sarcoidosis, vitreoretinal lymphoma (VRL), and controls with epiretinal membrane or macular hole. Differential expression proteins (DEPs) were identified by comparing with VRL and controls, and functional pathway analysis was performed. The candidate biomarker proteins for ocular sarcoidosis were validated using enzyme-linked immunosorbent assay. A total of 1590 proteins were identified in all samples. Of these, 290 and 174 DEPs were detected in vitreous of ocular sarcoidosis compared with controls and VRL, respectively. Enrichment pathway analysis revealed that pathways related to the immune system were most upregulated. Validation of two candidate biomarkers for ocular sarcoidosis, neutrophil gelatinase-associated lipocalin (NGAL) and junctional adhesion molecules B (JAMB), confirmed upregulated NGAL and JAMB protein expressions in ocular sarcoidosis compared to controls and VRL. The results of this study revealed that altered vitreous protein expression levels may discriminate ocular sarcoidosis from other uveitis diseases. Vitreous NGAL and JAMB are potential biomarkers and may serve as an auxiliary tool for the diagnosis of ocular sarcoidosis.
Collapse
|
6
|
Li R, Huang X, Yang L, Liang X, Huang W, Lai KP, Zhou L. Integrated Analysis Reveals the Targets and Mechanisms in Immunosuppressive Effect of Mesalazine on Ulcerative Colitis. Front Nutr 2022; 9:867692. [PMID: 35662946 PMCID: PMC9161553 DOI: 10.3389/fnut.2022.867692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease that causes inflammation and ulcers in the digestive tract. Approximately 3 million US adults suffer from this disease. Mesalazine, an anti-inflammatory agent, is commonly used for the treatment of UC. However, some studies have demonstrated side effects of mesalazine, such as acute pancreatitis and hypereosinophilia. Therefore, a better understanding of the anti-inflammatory mechanism of mesalazine in UC could help improve the effectiveness of the drug and reduce its side effects. In this study, we used a dextran sodium sulfate-induced UC mouse model, and applied network pharmacology and omics bioinformatics approaches to uncover the potential pharmaceutical targets and the anti-inflammatory mechanism of mesalazine. Results Network pharmacology analysis identified the core targets of mesalazine, biological processes, and cell signaling related to immunity and inflammatory responses mediated by mesalazine. Molecular docking analysis then indicated possible binding motifs on the core targets (including TNF-α, PTGS2, IL-1β, and EGFR). Metabolomics and 16S metagenomic analyses highlighted the correlation between gut microbiota and metabolite changes caused by mesalazine in the UC model. Conclusions Collectively, the omics and bioinformatics approaches and the experimental data unveiled the detailed molecular mechanisms of mesalazine in UC treatment, functional regulation of the gut immune system, and reduction of intestinal inflammation. More importantly, the identified core targets could be targeted for the treatment of UC.
Collapse
Affiliation(s)
- Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xue Huang
- Department of Gastroenterology, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Lu Yang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Xiao Liang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
| | - Wenjun Huang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- *Correspondence: Wenjun Huang
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, China
- Keng Po Lai
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Liming Zhou ;
| |
Collapse
|
7
|
Jia M, Sangwan N, Tzeng A, Eng C. Interplay Between Class II HLA Genotypes and the Microbiome and Immune Phenotypes in Individuals With PTEN Hamartoma Tumor Syndrome. JCO Precis Oncol 2021; 5:PO.20.00374. [PMID: 34250407 DOI: 10.1200/po.20.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
We evaluate potential contributors to the development of autoimmunity and other phenotypes consistent with immune dysregulation in individuals with germline mutations in the tumor suppressor gene PTEN in this observational report. MATERIALS AND METHODS Illumina sequencing of bacterial and fungal microbes was carried out on patient-donated fecal samples in a cohort of 67 patients with pathogenic germline PTEN mutations, including 41 individuals with autoimmunity and/or phenotypes consistent with immune dysregulation (cases) and 26 individuals without (controls). From these data, we measured differences in alpha and beta diversity between cases and controls and identified differentially abundant bacterial and fungal taxa using phyloseq and MicrobiomeSeq packages in R. We analyzed correlations between these taxa and specific HLA genotypes, along with correlations between HLA diversity and microbial diversity, by conducting high-resolution HLA genotyping at four class II loci (DRB1, DRB345, DQA1, and DQB1). RESULTS We found that alpha diversity distributions for both bacterial and fungal genera were statistically different between cases and controls. We identified differentially abundant bacterial and fungal taxa between cases and controls. Network analysis of differentially abundant bacterial taxa revealed some co-varying bacterial genera. We additionally found significant correlations between certain HLA genotypes and certain taxa and significant correlations between HLA diversity and alpha diversity. CONCLUSION PTEN-associated immune phenotypes might be influenced by the gut microbiome, and class II HLA molecules, in part, crosstalk with the gut microbiome. These preliminary observations should lay the groundwork for future studies to ultimately derive clinical measures, which could use gut microbiome and HLA molecule biomarkers to predict, and perhaps prevent, immunity and inflammation in patients predisposed to cancer because of germline PTEN mutations.
Collapse
Affiliation(s)
- Margaret Jia
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Naseer Sangwan
- Center for Microbiome in Health and Disease, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Alice Tzeng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
8
|
Mertens C, Kuchler L, Sola A, Guiteras R, Grein S, Brüne B, von Knethen A, Jung M. Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. Int J Mol Sci 2020; 21:ijms21207527. [PMID: 33065981 PMCID: PMC7589935 DOI: 10.3390/ijms21207527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
During the course of sepsis in critically ill patients, kidney dysfunction and damage are among the first events of a complex scenario toward multi-organ failure and patient death. Acute kidney injury triggers the release of lipocalin-2 (Lcn-2), which is involved in both renal injury and recovery. Taking into account that Lcn-2 binds and transports iron with high affinity, we aimed at clarifying if Lcn-2 fulfills different biological functions according to its iron-loading status and its cellular source during sepsis-induced kidney failure. We assessed Lcn-2 levels both in serum and in the supernatant of short-term cultured renal macrophages (MΦ) as well as renal tubular epithelial cells (TEC) isolated from either Sham-operated or cecal ligation and puncture (CLP)-treated septic mice. Total kidney iron content was analyzed by Perls’ staining, while Lcn-2-bound iron in the supernatants of short-term cultured cells was determined by atomic absorption spectroscopy. Lcn-2 protein in serum was rapidly up-regulated at 6 h after sepsis induction and subsequently increased up to 48 h. Lcn-2-levels in the supernatant of TEC peaked at 24 h and were low at 48 h with no change in its iron-loading. In contrast, in renal MΦ Lcn-2 was low at 24 h, but increased at 48 h, where it mainly appeared in its iron-bound form. Whereas TEC-secreted, iron-free Lcn-2 was associated with renal injury, increased MΦ-released iron-bound Lcn-2 was linked to renal recovery. Therefore, we hypothesized that both the cellular source of Lcn-2 as well as its iron-load crucially adds to its biological function during sepsis-induced renal injury.
Collapse
Affiliation(s)
- Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Laura Kuchler
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Anna Sola
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Roser Guiteras
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Stephan Grein
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA;
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Correspondence:
| |
Collapse
|
9
|
Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, Wang L, Zhou H, Cui W, Jiang Y, Li Y, Xu Y, Tang L. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin-lactoferrampin alleviates the development of acute colitis in mice. Appl Microbiol Biotechnol 2019; 103:6169-6186. [PMID: 31165225 DOI: 10.1007/s00253-019-09898-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease. Treatment of UC would benefit from specific targeting of therapeutics to the intestine. Previous studies have demonstrated that bovine lactoferricin and lactoferrampin have bactericidal, anti-inflammatory, and immunomodulatory effects. Here, we investigated whether oral administration of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactococcus lactis (LL-LFCA) strain could alleviate experimental colitis. LFCA derived from LL-LFCA inhibited the growth of Escherichia coli and Staphylococcus aureus in vitro. In mice, administration of LL-LFCA decreased the disease activity index and attenuated dextran sulfate sodium (DSS)-induced body weight loss and colon shortening. LL-LFCA treatment also ameliorated DSS-induced colon damage, inhibited inflammatory cell infiltration, significantly decreased myeloperoxidase activity, and ameliorated DSS-induced disruption of intestinal permeability and tight junctions. In addition, 16S rDNA sequencing showed that LL-LFCA reversed DSS-induced gut dysbiosis. The production of proinflammatory mediators in serum and the colon was also reduced by administration of LL-LFCA. In vitro, LFCA derived from LL-LFCA decreased the messenger RNA expression of proinflammatory factors. The underlying mechanisms may involve inhibition of the nuclear factor kappa B (NF-κB) pathway. The results demonstrate that LL-LFCA ameliorates DSS-induced intestinal injury in mice, suggesting that LL-LFCA might be an effective drug for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Zhihang Liu
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Dian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| |
Collapse
|
10
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Singh V, Wang Y, Vijay-Kumar M. PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol 2019; 12:761-771. [PMID: 30710097 PMCID: PMC6519124 DOI: 10.1038/s41385-019-0139-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Peptidyl arginine deiminase-4 (PAD4) is indispensable for generation of neutrophil extracellular traps (NETs), which can provide antimicrobial effects during host innate immune response; however, the role of PAD4 against gastrointestinal infection is largely unknown. Herein, we challenged PAD4-deficient (Pad4-/-) mice and wild-type (WT) littermates with Citrobacter rodentium (CR), and investigated bacteria clearance and gut pathology. Luminal colonization of CR in Pad4-/- mice peaked between 11-14 days post-infection, whereas WT mice suppressed the infection by 14 days. We demonstrated that Pad4-/- mice were unable to form NETs, whereas WT mice showed increased NETs formation in the colon during infection. Pad4-/- mice showed aggravated CR-associated inflammation as indicated by elevated systemic and colonic pro-inflammatory markers. Histological analysis revealed that transmissible colonic hyperplasia, goblet cell depletion, and apoptotic cell death were more pronounced in the colon of CR-infected Pad4-/- mice. Treating WT mice with deoxyribonuclease I, which can disrupt NETs generation, recapitulated the exacerbated CR infection and gut pathology associated with the loss of PAD4. Administration of the PAD4 inhibitor, Cl-amidine also aggravated CR infection, but to a lesser extent. Taken together, our findings highlight the importance of PAD4 in the mucosal clearance of CR and in resolving gut-associated inflammation.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, The Pennsylvania State University, University Park, Philadelphia, PA, 16802, USA
| | - Xia Xiao
- Division of Nephrology, MGH, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachel M Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Vishal Singh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yanming Wang
- College of Life Sciences & Medicine, Henan University, Kaifeng, 475004, China
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
11
|
Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A, Banse AV, Hamilton MK, Guillemin K. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. eLife 2018; 7:e37172. [PMID: 30398151 PMCID: PMC6219842 DOI: 10.7554/elife.37172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.
Collapse
Affiliation(s)
- Annah S Rolig
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Lila E Kaye
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Arden Perkins
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | - Allison V Banse
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Karen Guillemin
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
- Humans and the Microbiome ProgramCanadian Institute for Advanced ResearchTorontoCanada
| |
Collapse
|
12
|
Parmar T, Parmar VM, Perusek L, Georges A, Takahashi M, Crabb JW, Maeda A. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration. THE JOURNAL OF IMMUNOLOGY 2018; 200:3128-3141. [PMID: 29602770 DOI: 10.4049/jimmunol.1701573] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 (Abca4) -/- retinol dehydrogenase 8 (Rdh8) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2-/-Abca4-/-Rdh8-/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2-/-Abca4-/-Rdh8-/- mice as compared with Abca4-/-Rdh8-/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8, Ccl2, and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H2O2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lindsay Perusek
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Anouk Georges
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic, OH 44195; and
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106; .,Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|