1
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
2
|
Lott DG, Shah M, Myers C, McPhail M, Neubauer J, Struthers J, Madsen CS, Grandjean D, Zacharias SRC, Tchoukalova YD. A Tissue Engineered Construct for Laryngeal Regeneration: A Proof-of-Concept Device Design Study. Laryngoscope 2022; 132 Suppl 9:S1-S11. [PMID: 35084750 DOI: 10.1002/lary.30029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Develop a patient-specific tissue engineered construct for laryngeal reconstruction following a partial laryngectomy. STUDY DESIGN Bench and animal research. METHODS A construct made from a porous polyethylene scaffold shaped in a canine-specific configuration and seeded with autologous canine adipose-derived stem cells in fibrin glue was implanted in a canine following a partial laryngectomy. After 1 year, the construct was first evaluated in vivo with high-speed imaging and acoustic-aerodynamic measures. It was then explanted and evaluated histologically. RESULTS The canine study at 1 year revealed the construct provided voicing (barking) with acoustic and aerodynamic measures within normal ranges. The canine was able to eat and breathe normally without long-term support. The construct was integrated with epithelialization of all areas except the medial portion of the vocal fold structure. No anti-infective agents were needed after the standard perioperative medications were completed. CONCLUSION This study provided a successful first step toward developing a patient-specific composite construct for patients undergoing partial laryngectomies. LEVEL OF EVIDENCE Not Applicable Laryngoscope, 2022.
Collapse
Affiliation(s)
- David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A.,Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | - Manisha Shah
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Cheryl Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Michael McPhail
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Juergen Neubauer
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Jason Struthers
- Department of Pathology and Population Medicine of Midwestern University's College of Veterinary Medicine, Glendale, Arizona, U.S.A
| | - Cathy S Madsen
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Danielle Grandjean
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| | - Stephanie R C Zacharias
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A.,Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | - Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, U.S.A
| |
Collapse
|
3
|
Barthes J, Lagarrigue P, Riabov V, Lutzweiler G, Kirsch J, Muller C, Courtial EJ, Marquette C, Projetti F, Kzhyskowska J, Lavalle P, Vrana NE, Dupret-Bories A. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials 2020; 268:120549. [PMID: 33278685 DOI: 10.1016/j.biomaterials.2020.120549] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
The recent advances in 3D-printed silicone (PDMS: polydimethylsiloxane) implants present prospects for personalized implants with highly accurate anatomical conformity. However, a potential adverse effect, such as granuloma formation due to immune reactions, still exists. One potential way to overcome this problem is to control the implant/host interface using immunomodulatory coatings. In this study, a new cytokine cocktail composed of interleukin-10 and prostaglandin-E2 was designed to decrease adverse immune reactions and promote tissue integration by fixing macrophages into M2 pro-healing phenotype for an extended period of time. In vitro, the cytokine cocktail maintained low levels of pro-inflammatory cytokine (TNF-α and IL-6) secretions and induced the secretion of IL-10 and the upregulation of multifunctional scavenging and sorting receptor stabilin-1, expressed by M2 macrophages. This cocktail was then loaded in a gelatine-based hydrogel to develop an immunomodulatory material that could be used as a coating for medical devices. The efficacy of this coating was demonstrated in an in vivo rat model during the reconstruction of a tracheal defect by 3D-printed silicone implants. The coating was stable on the silicone implants for over 2 weeks, and the controlled release of the cocktail components was achieved for at least 14 days. In vivo, only 33% of the animals with bare silicone implants survived, whereas 100% of the animals survived with the implant equipped with the immunomodulatory hydrogel. The presence of the hydrogel and the cytokine cocktail diminished the thickness of the inflammatory tissue, the intensity of both acute and chronic inflammation, the overall fibroblastic reaction, the presence of oedema and the formation of fibrinoid (assessed by histology) and led to a 100% survival rate. At the systemic level, the presence of immunomodulatory hydrogels significantly decreased pro-inflammatory cytokines such as TNF-α, IFN-γ, CXCL1 and MCP-1 levels at day 7 and significantly decreased IL-1α, IL-1β, CXCL1 and MCP-1 levels at day 21. The ability of this new immunomodulatory hydrogel to control the level of inflammation once applied to a 3D-printed silicone implant has been demonstrated. Such thin coatings can be applied to any implants or scaffolds used in tissue engineering to diminish the initial immune response, improve the integration and functionality of these materials and decrease potential complications related to their presence.
Collapse
Affiliation(s)
- J Barthes
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France.
| | - P Lagarrigue
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - V Riabov
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - G Lutzweiler
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - J Kirsch
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany
| | - C Muller
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - E-J Courtial
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - C Marquette
- 3d.FAB, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| | - F Projetti
- Department of Pathology, 18 rue du general Catroux, 87039, Limoges Cedex 1, France
| | - J Kzhyskowska
- Institute for Transfusion Medicine and Immunology, Medical, Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68167, Mannheim, Germany; German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany; National Research Tomsk State University, Tomsk, 634050, Russia
| | - P Lavalle
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France
| | - N E Vrana
- Institut National de La Santé et de La Recherche Médicale, INSERM UMR1121 "Biomaterials and Bioengineering", 11 Rue Humann, 67085, Strasbourg, France; Spartha Medical, 14B rue de La Canardière, 67100, Strasbourg, France
| | - A Dupret-Bories
- Department of Otorhinolaryngology, Head and Neck Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse Oncopole, 31009, Toulouse, France.
| |
Collapse
|
4
|
Townsend JM, Weatherly RA, Johnson JK, Detamore MS. Standardization of Microcomputed Tomography for Tracheal Tissue Engineering Analysis. Tissue Eng Part C Methods 2020; 26:590-595. [PMID: 33138726 DOI: 10.1089/ten.tec.2020.0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tracheal tissue engineering has become an active area of interest among clinical and scientific communities; however, methods to evaluate success of in vivo tissue-engineered solutions remain primarily qualitative. These evaluation methods have generally relied on the use of photographs to qualitatively demonstrate tracheal patency, endoscopy to image healing over time, and histology to determine the quality of the regenerated extracellular matrix. Although those generally qualitative methods are valuable, they alone may be insufficient. Therefore, to quantitatively assess tracheal regeneration, we recommend the inclusion of microcomputed tomography (μCT) to quantify tracheal patency as a standard outcome analysis. To establish a standard of practice for quantitative μCT assessment for tracheal tissue engineering, we recommend selecting a constant length to quantify airway volume. Dividing airway volumes by a constant length provides an average cross-sectional area for comparing groups. We caution against selecting a length that is unjustifiably large, which may result in artificially inflating the average cross-sectional area and thereby diminishing the ability to detect actual differences between a test group and a healthy control. Therefore, we recommend selecting a length for μCT assessment that corresponds to the length of the defect region. We further recommend quantifying the minimum cross-sectional area, which does not depend on the length, but has functional implications for breathing. We present empirical data to elucidate the rationale for these recommendations. These empirical data may at first glance appear as expected and unsurprising. However, these standard methods for performing μCT and presentation of results do not yet exist in the literature, and are necessary to improve reporting within the field. Quantitative analyses will better enable comparisons between future publications within the tracheal tissue engineering community and empower a more rigorous assessment of results. Impact statement The current study argues for the standardization of microcomputed tomography (μCT) as a quantitative method for evaluating tracheal tissue-engineered solutions in vivo or ex vivo. The field of tracheal tissue engineering has generally relied on the use of qualitative methods for determining tracheal patency. A standardized quantitative evaluation method currently does not exist. The standardization of μCT for evaluation of in vivo studies would enable a more robust characterization and allow comparisons between groups within the field. The impact of standardized methods within the tracheal tissue engineering field as presented in the current study would greatly improve the quality of published work.
Collapse
Affiliation(s)
- Jakob M Townsend
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
| | - Robert A Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri, USA
| | | | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
5
|
Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110142. [DOI: 10.1016/j.msec.2019.110142] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
|
6
|
Bhora FY, Lewis EE, Rehmani SS, Ayub A, Raad W, Al-Ayoubi AM, Lebovics RS. Circumferential Three-Dimensional-Printed Tracheal Grafts: Research Model Feasibility and Early Results. Ann Thorac Surg 2017; 104:958-963. [PMID: 28619543 DOI: 10.1016/j.athoracsur.2017.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Methods for tracheal graft research have presented persistent challenges to investigators, and three-dimensional (3D)-printed biosynthetic grafts offer one potential development platform. We aimed to develop an efficient research platform for customizable circumferential 3D-printed tracheal grafts and evaluate feasibility and early structural integrity with a large-animal model. METHODS Virtual 3D models of porcine subject tracheas were generated using preoperative computed tomography scans. Two designs were used to test graft customizability and the limits of the construction process. Designs I and II used 270-degree and 360-degree external polycaprolactone scaffolds, respectively, both encompassing a circumferential extracellular matrix collagen layer. The polycaprolactone scaffolds were made in a fused-deposition modeling 3D printer and customized to the recipient's anatomy. Design I was implanted in 3 pigs and design II in 2 pigs, replacing 4-ring tracheal segments. Data collected included details of graft construction, clinical outcomes, bronchoscopy, and gross and histologic examination. RESULTS The 3D-printed biosynthetic grafts were produced with high fidelity to the native organ. The fabrication process took 36 hours. Grafts were implanted without immediate complication. Bronchoscopy immediately postoperatively and at 1 week demonstrated patent grafts and appropriate healing. All animals lived beyond a predetermined 1-week survival period. Bronchoscopy at 2 weeks showed significant paraanastomotic granulation tissue, which, along with partial paraanastomotic epithelialization, was confirmed on pathology. Overall survival was 17 to 34 days. CONCLUSIONS We propose a rapid, reproducible, resource efficient method to develop various anatomically precise grafts. Further graft refinement and strategies for granulation tissue management are needed to improve outcomes.
Collapse
Affiliation(s)
- Faiz Y Bhora
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Erik E Lewis
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sadiq S Rehmani
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adil Ayub
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wissam Raad
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adnan M Al-Ayoubi
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert S Lebovics
- Department of Otolaryngology, Mount Sinai West, Mount Sinai Health System, New York, New York
| |
Collapse
|
7
|
Histopathological evaluation and long-term results of soft tissue preservation technique in cholesteatoma surgery. Eur Arch Otorhinolaryngol 2016; 274:711-714. [DOI: 10.1007/s00405-016-4328-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/28/2016] [Indexed: 11/27/2022]
|
8
|
Chiang T, Pepper V, Best C, Onwuka E, Breuer CK. Clinical Translation of Tissue Engineered Trachea Grafts. Ann Otol Rhinol Laryngol 2016; 125:873-885. [PMID: 27411362 DOI: 10.1177/0003489416656646] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To provide a state-of-the-art review discussing recent achievements in tissue engineered tracheal reconstruction. DATA SOURCES AND REVIEW METHODS A structured PubMed search of the current literature up to and including October 2015. Representative articles that discuss the translation of tissue engineered tracheal grafts (TETG) were reviewed. CONCLUSIONS The integration of a biologically compatible support with autologous cells has resulted in successful regeneration of respiratory epithelium, cartilage, and vascularization with graft patency, although the optimal construct composition has yet to be defined. Segmental TETG constructs are more commonly complicated by stenosis and delayed epithelialization when compared to patch tracheoplasty. IMPLICATIONS FOR PRACTICE The recent history of human TETG recipients represents revolutionary proof of principle studies in regenerative medicine. Application of TETG remains limited to a compassionate use basis; however, defining the mechanisms of cartilage formation, epithelialization, and refinement of in vivo regeneration will advance the translation of TETG from the bench to the bedside.
Collapse
Affiliation(s)
- Tendy Chiang
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher K Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
9
|
Hung SH, Su CH, Lin SE, Tseng H. Preliminary experiences in trachea scaffold tissue engineering with segmental organ decellularization. Laryngoscope 2016; 126:2520-2527. [PMID: 26928374 DOI: 10.1002/lary.25932] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/22/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Ideal methods for reconstructing the tracheal structure and restoring tracheal function following damage to the trachea or removal of the trachea have not been developed. The purpose of this study is to evaluate the feasibility of using a whole segment decellularized tracheal scaffold to reconstruct the trachea. STUDY DESIGN Prospective experimental design. SETTING In vivo rabbit model. METHODS Trachea scaffolds were created using our previously developed freeze-dry-sonication-sodium dodecyl sulfate (SDS), [FDSS] decellularization process. After histological and mechanical testing, the scaffolds were transplanted orthotopically into segmental defects in New Zealand White Rabbits (n = 9). Another three rabbits receiving the sham operation with autologous trachea transplantations served as the control group. Two weeks after transplantation, the grafts were evaluated endoscopically and histologically. RESULTS The mechanical properties of the decellularized trachea segment did not differ significantly from the fresh native trachea. After transplantation, whereas the autograft in the control group showed full integration and functional recovery, all of the rabbits in the decellularized scaffold transplantation group died within 7∼24 days. Although significant collapse of the tracheal tubular structures was noted, full respiratory epithelium regeneration was observed in the rabbits that survived more than 2 weeks. CONCLUSION The FDSS decellularization process is effective in creating whole-segment, subtotally decellularized trachea scaffolds. However, although the respiratory epithelium regeneration on the inner surface appeared to be satisfactory, the tubular structures were not able to be maintained after transplantation, which ultimately led to the death of the animals. LEVEL OF EVIDENCE NA Laryngoscope, 126:2520-2527, 2016.
Collapse
Affiliation(s)
- Shih-Han Hung
- Department of Otolaryngology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Hui Su
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Otorhinolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Sey-En Lin
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - How Tseng
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan. .,Department of Biochemistry and Molecular Cell Biology, School of Medicine , College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Chua C H M, Chui CK, Rai B, Lau D P D. Development of a patient specific artificial tracheal prosthesis: design, mechanical behavior analysis and manufacturing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6236-9. [PMID: 24111165 DOI: 10.1109/embc.2013.6610978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is a need to create patient specific organ replacements as there are differences in the anatomical dimensions among individuals. High failure rates in tracheal prosthesis are attributed to the lack of mechanical strength and flexibility, slow rate of growth of ciliated epithelium and leakage of interstitial fluid into the lumen. This paper proposes a methodology of design, simulations and fabrication of a patient specific artificial tracheal prosthesis for implantation to closely mimic the biomechanical properties of the natural trachea, and describes the prototype device and its materials. Results show that the patient-specific trachea prosthesis has mechanical properties approximate that of normal tracheal rings. The user centric tracheal prosthesis is demonstrated to be a promising candidate for tracheal replacement.
Collapse
|
11
|
Patient-specific carbon nanocomposite tracheal prosthesis. Int J Artif Organs 2015; 38:31-8. [PMID: 25633892 DOI: 10.5301/ijao.5000374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Surgical removal of the trachea is the current gold standard for treating severe airway carcinoma and stenosis. Resection of 6 cm or more of the trachea requires a replacement graft due to anastomotic tension. The high failure rates of current grafts are attributed to a mismatching of mechanical properties and slow epithelium formation on the inner lumen surface. There is also a current lack of tracheal prostheses that are closely tailored to the patient's anatomy. METHODS We propose the development of a patient-specific, artificial trachea made of carbon nanotubes and poly-di-methyl-siloxane (CNT-PDMS) composite material. Computational simulations and finite element analysis were used to study the stress behavior of the designed implant in a patient-specific, tracheal model. RESULTS Finite element studies indicated that the patient-specific carbon nanocomposite prosthesis produced stress distributions that are closer to that of the natural trachea. In vitro studies conducted on the proposed material have demonstrated its biocompatibility and suitability for sustaining tracheal epithelial cell proliferation and differentiation. In vivo studies done in porcine models showed no adverse side effects or breathing difficulties, with complete regeneration of the epithelium in the prosthesis lumen within 2 weeks. CONCLUSIONS This paper highlights the potential of a patient-specific CNT-PDMS graft as a viable airway replacement in severe tracheal carcinoma.
Collapse
|
12
|
Abstract
SUMMARY A recent revival of global interest for reconstruction of long-segment tracheal defects, which represents one of the most interesting and complex problems in head and neck and thoracic reconstructive surgery, has been witnessed. The trachea functions as a conduit for air, and its subunits including the epithelial layer, hyaline cartilage, and segmental blood supply make it particularly challenging to reconstruct. A myriad of attempts at replacing the trachea have been described. These along with the anatomy, indications, and approaches including microsurgical tracheal reconstruction will be reviewed. Novel techniques such as tissue-engineering approaches will also be discussed. Multiple attempts at replacing the trachea with synthetic scaffolds have been met with failure. The main lesson learned from such failures is that the trachea must not be treated as a "simple tube." Understanding the anatomy, developmental biology, physiology, and diseases affecting the trachea are required for solving this problem.
Collapse
|
13
|
Advances in tracheal reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e178. [PMID: 25426361 PMCID: PMC4229282 DOI: 10.1097/gox.0000000000000097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/24/2014] [Indexed: 12/26/2022]
Abstract
Summary: A recent revival of global interest for reconstruction of long-segment tracheal defects, which represents one of the most interesting and complex problems in head and neck and thoracic reconstructive surgery, has been witnessed. The trachea functions as a conduit for air, and its subunits including the epithelial layer, hyaline cartilage, and segmental blood supply make it particularly challenging to reconstruct. A myriad of attempts at replacing the trachea have been described. These along with the anatomy, indications, and approaches including microsurgical tracheal reconstruction will be reviewed. Novel techniques such as tissue-engineering approaches will also be discussed. Multiple attempts at replacing the trachea with synthetic scaffolds have been met with failure. The main lesson learned from such failures is that the trachea must not be treated as a “simple tube.” Understanding the anatomy, developmental biology, physiology, and diseases affecting the trachea are required for solving this problem.
Collapse
|
14
|
Evaristo TC, CruzAlves FCMD, Moroz A, Mion W, Acorci-Valério MJ, Felisbino SL, Rossi-Ferreira R, Ruiz Júnior RL, Deffune E. Light-emitting diode effects on combined decellularization of tracheae. A novel approach to obtain biological scaffolds. Acta Cir Bras 2014; 29:485-92. [DOI: 10.1590/s0102-86502014000800002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023] Open
|
15
|
Lee JH, Park HS, Oh SH, Lee JH, Kim JR, Kim HJ, Jung SY, Chung SM, Choi HS, Kim HS. Triple-layered polyurethane prosthesis with wrinkles for repairing partial tracheal defects. Laryngoscope 2014; 124:2757-63. [DOI: 10.1002/lary.24809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Ja H. Lee
- Department of Otorhinolaryngology; National Health Insurance Service Ilsan Hospital; Gyeonggi-do
| | - Hae S. Park
- Department of Otorhinolaryngology Head & Neck Surgery; School of Medicine; Ewha Womans University; Seoul
| | - Se H. Oh
- Department of Nanobiomedical Science; BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan
| | - Jin H. Lee
- Department of Advanced Materials; Hannam University; Daejeon
| | - Jin R. Kim
- Department of Advanced Materials; Hannam University; Daejeon
| | - Hyun J. Kim
- Department of Otorhinolaryngology; Yonsei University, College of Medicine; Seoul Republic of Korea
| | - Soo Y. Jung
- Department of Otorhinolaryngology Head & Neck Surgery; School of Medicine; Ewha Womans University; Seoul
| | - Sung M. Chung
- Department of Otorhinolaryngology Head & Neck Surgery; School of Medicine; Ewha Womans University; Seoul
| | - Hong S. Choi
- Department of Otorhinolaryngology; Yonsei University, College of Medicine; Seoul Republic of Korea
| | - Han S. Kim
- Department of Otorhinolaryngology Head & Neck Surgery; School of Medicine; Ewha Womans University; Seoul
| |
Collapse
|
16
|
Hamilton N, Bullock AJ, Macneil S, Janes SM, Birchall M. Tissue engineering airway mucosa: a systematic review. Laryngoscope 2014; 124:961-8. [PMID: 24129819 DOI: 10.1002/lary.24469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVES/HYPOTHESIS Effective treatments for hollow organ stenosis, scarring, or agenesis are suboptimal or lacking. Tissue-engineered implants may provide a solution, but those performed to date are limited by poor mucosalization after transplantation. We aimed to perform a systematic review of the literature on tissue-engineered airway mucosa. Our objectives were to assess the success of this technology and its potential application to airway regenerative medicine and to determine the direction of future research to maximize its therapeutic and commercial potential. DATA SOURCES AND REVIEW METHODS A systematic review of the literature was performed searching Medline (January 1996) and Embase (January 1980) using search terms "tissue engineering" or "tissue" and "engineering" or "tissue engineered" and "mucous membrane" or "mucous" and "membrane" or "mucosa." Original studies utilizing tissue engineering to regenerate airway mucosa within the trachea or the main bronchi in animal models or human studies were included. RESULTS A total of 719 papers matched the search criteria, with 17 fulfilling the entry criteria. Of these 17, four investigated mucosal engineering in humans, with the remaining 13 studies investigating mucosal engineering in animal models. The review demonstrated how an intact mucosal layer protects against infection and suggests a role for fibroblasts in facilitating epithelial regeneration in vitro. A range of scaffold materials were used, but no single material was clearly superior to the others. CONCLUSION The review highlights gaps in the literature and recommends key directions for future research such as epithelial tracking and the role of the extracellular environment.
Collapse
|
17
|
Chua M, Chui CK, Chng CB, Lau D. Carbon Nanotube-Based Artificial Tracheal Prosthesis: Carbon nanocomposite implants for patient-specific ENT care. IEEE NANOTECHNOLOGY MAGAZINE 2013. [DOI: 10.1109/mnano.2013.2289691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Del Gaudio C, Baiguera S, Ajalloueian F, Bianco A, Macchiarini P. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs? J Biomed Mater Res A 2013; 102:2427-47. [PMID: 23894109 DOI: 10.1002/jbm.a.34883] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
Transplantation of tissues and organs is currently the only available treatment for patients with end-stage diseases. However, its feasibility is limited by the chronic shortage of suitable donors, the need for life-long immunosuppression, and by socioeconomical and religious concerns. Recently, tissue engineering has garnered interest as a means to generate cell-seeded three-dimensional scaffolds that could replace diseased organs without requiring immunosuppression. Using a regenerative approach, scaffolds made by synthetic, nonimmunogenic, and biocompatible materials have been developed and successfully clinically implanted. This strategy, based on a viable and ready-to-use bioengineered scaffold, able to promote novel tissue formation, favoring cell adhesion and proliferation, could become a reliable alternative to allotransplatation in the next future. In this article, tissue-engineered synthetic substitutes for tubular organs (such as trachea, esophagus, bile ducts, and bowel) are reviewed, including a discussion on their morphological and functional properties.
Collapse
Affiliation(s)
- Costantino Del Gaudio
- University of Rome "Tor Vergata", Department of Industrial Engineering, Intrauniversitary Consortium for Material Science and Technology (INSTM), Research Unit Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Regenerative Therapies-Trachea. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Gugatschka M, Ohno S, Saxena A, Hirano S. Regenerative medicine of the larynx. Where are we today? A review. J Voice 2012; 26:670.e7-13. [PMID: 22795981 DOI: 10.1016/j.jvoice.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/20/2012] [Indexed: 12/14/2022]
Abstract
Tissue engineering is a multidimensional process combining cells, scaffold matrices, and chemical signals to produce a structure similar to a target tissue. These techniques have opened a completely new field in diagnosis and therapy in numerous fields, including that of laryngology. Laryngeal tissue engineering has emerged in the last decade, although clinical applications are rare. The reasons therefore are numerous including ethical reasons, as well as the extremely complex anatomical structure of the vocal fold. The search for new treatment options has also enlarged our knowledge about the microphysiology and micropathophysiology of the vocal fold. To date, only specific growth factors are in clinical use for treatment of vocal fold atrophy. Big advances have been made in creating state-of-the-art scaffolds with various techniques including biomaterials as well as fully synthetic polymers. These scaffolds are supposed to provide an optimal environment for residual or implanted cells. Several in vitro settings showed practicability of these scaffolds, also in studying effects of growth factors. Cell therapy is a powerful tool in regenerative medicine but bears the uncertainty of possible malignant transformation. The aim of this review was to give a comprehensive overview about current knowledge in the field of laryngeal tissue engineering and regenerative medicine, including restoration of both vocal folds and laryngeal cartilage, and furthermore to elucidate further trends in this fascinating field.
Collapse
Affiliation(s)
- Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria.
| | | | | | | |
Collapse
|
22
|
Jang CH, Cho YB, Kim JS, Lee HJ, Kim GH. Regeneration of mastoid air cells using polycaprolactone/β-tricalcium phosphate biocomposites: An experimental study. Laryngoscope 2012; 122:660-4. [DOI: 10.1002/lary.22503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/20/2011] [Accepted: 11/29/2011] [Indexed: 11/06/2022]
|
23
|
Overview of Tracheal Tissue Engineering: Clinical Need Drives the Laboratory Approach. Ann Biomed Eng 2011; 39:2091-113. [DOI: 10.1007/s10439-011-0318-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/22/2011] [Indexed: 11/25/2022]
|
24
|
Rickert D. Polymeric implant materials for the reconstruction of tracheal and pharyngeal mucosal defects in head and neck surgery. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc06. [PMID: 22073099 PMCID: PMC3199816 DOI: 10.3205/cto000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The existing therapeutical options for the tracheal and pharyngeal reconstruction by use of implant materials are described. Inspite of a multitude of options and the availability of very different materials none of these methods applied for tracheal reconstruction were successfully introduced into the clinical routine. Essential problems are insufficiencies of anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The advances in Tissue Engineering (TE) offer new therapeutical options also in the field of the reconstructive surgery of the trachea. In pharyngeal reconstruction far reaching developments cannot be recognized at the moment which would allow to give a prognosis of their success in clinical application. A new polymeric implant material consisting of multiblock copolymers was applied in our own work which was regarded as a promising material for the reconstruction of the upper aerodigestive tract (ADT) due to its physicochemical characteristics. In order to test this material for applications in the ADT under extreme chemical, enzymatical, bacterial and mechanical conditions we applied it for the reconstruction of a complete defect of the gastric wall in an animal model. In none of the animals tested either gastrointestinal complications or negative systemic events occurred, however, there was a multilayered regeneration of the gastric wall implying a regular structured mucosa. In future the advanced stem cell technology will allow further progress in the reconstruction of different kind of tissues also in the field of head and neck surgery following the principles of Tissue Engineering.
Collapse
Affiliation(s)
- Dorothee Rickert
- University Hospital and Ambulance for Ear, Nose and Throat Diseases, Ulm, Germany
| |
Collapse
|
25
|
Sternberg K. Current requirements for polymeric biomaterials in otolaryngology. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc11. [PMID: 22073104 PMCID: PMC3199814 DOI: 10.3205/cto000063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years otolaryngology was strongly influenced by newly developed implants which are based on both, innovative biomaterials and novel implant technologies. Since the biomaterials are integrated into biological systems they have to fulfill all technical requirements and accommodate biological interactions. Technical functionality relating to implant specific mechanical properties, a sufficiently high stability in terms of physiological conditions, and good biocompatibility are the demands with regard to suitability of biomaterials. The goal in applying biomaterials for implants is to maintain biofunctionality over extended periods of time. These general demands to biomaterials are equally valid for use in otolaryngology. Different classes of materials can be utilized as biomaterials. Metals belong to the oldest biomaterials. In addition, alloys, ceramics, inorganic glasses and composites have been tested successfully. Furthermore, natural and synthetic polymers are widely used materials, which will be in the focus of the current article with regard to their properties and usage as cochlear implants, osteosynthesis implants, stents, and matrices for tissue engineering. Due to their application as permanent or temporary implants materials are differentiated into biostable and biodegradable polymers. The here identified general and up to date requirements for biomaterials and the illustrated applications in otolaryngology emphasize ongoing research efforts in this area and at the same time demonstrate the high significance of interdisciplinary cooperation between natural sciences, engineering, and medical sciences.
Collapse
Affiliation(s)
- Katrin Sternberg
- Institut für Biomedizinische Technik, University Rostock, Germany
| |
Collapse
|
26
|
Kanemaru SI, Hirano S, Umeda H, Yamashita M, Suehiro A, Nakamura T, Maetani T, Omori K, Ito J. A tissue-engineering approach for stenosis of the trachea and/or cricoid. Acta Otolaryngol 2010:79-83. [PMID: 20879824 DOI: 10.3109/00016489.2010.496462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION This new regenerative therapy shows great potential for the treatment of stenosis of the trachea and/or cricoids (STC). OBJECTIVES To estimate the potential of tissue-engineered artificial trachea (AT) for treatment of STC in clinical applications. We previously reported that AT was a useful material for implantation into a tracheal defect after resection of cancer. There are many causes of stenosis of the respiratory tract and STC is particularly difficult to treat. METHODS The AT was a spiral stent composed of Marlex mesh made of polypropylene and covered with collagen sponge made from porcine skin. Three patients with STC were treated by this tissue-engineering method. All of them suffered from STC caused by long endotracheal intubations. They underwent a two-stage operation. In the first operation, after resection of the stenotic regions, the edge of the tracheal cartilage was sutured to the edge of the skin. The tracheal lumen was exposed and a T-shaped cannula was inserted into the large tracheostoma. At 3 weeks to 2 months after the first operation, the trachea and skin were separated. The trimmed AT with venous blood and basic fibroblast growth factor (b-FGF) was then implanted into the cartilage defect. RESULTS Postoperatively, all patients were able to breathe easily and had no discomfort in their daily activities. Six months after the second operation, we observed enough air space in the trachea and cricoid by computed tomography (CT) imaging and fiber endoscopy.
Collapse
|
27
|
Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int 2010; 26:575-80. [PMID: 20425118 DOI: 10.1007/s00383-010-2609-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE We studied the regenerated cartilage in tracheal defect repair and compared the bio-materials used versus native trachea using basic fibroblast growth factor (bFGF)-impregnated gelatin hydrogel. MATERIALS AND METHODS A full-thickness anterior defect was created in the cervical trachea of 15 experimental rabbits. The defect was implanted with a hybrid scaffold of poly(lactic-co-glycolic acid) (PLGA) knitted mesh and collagen sponge. The implanted trachea was reinforced with a copolymer stent of polycaprolactone and poly(lactic acid) coarse fiber mesh. A gelatin hydrogel was used for providing a sustained release of bFGF. The reconstructed tracheas were divided into three groups with wrapped materials; without gelatin hydrogel (control group, n = 5), a gelatin hydrogel with saline (gelatin group, n = 5), and a gelatin hydrogel with 100 microg of bFGF (bFGF group, n = 5). One of the five rabbits in each group at 1 month after operation, one at 3 months, and three at 6 months were killed and the engineered tracheas were evaluated histologically. Biomechanical properties were evaluated on samples at 6 months postoperatively. RESULTS The rigid support in the defect portion was maintained during 6 months postoperatively. The newly regenerated cartilages were recognized between the host cartilage stumps at 3 months postoperatively in the bFGF group, and limited new cartilage growth and epithelialization were observed at 6 months postoperatively. CONCLUSIONS The experiment shows that using bFGF, better mechanical strength was obtained but with poor cartilage growth.
Collapse
|
28
|
Yamashita M, Kanemaru SI, Hirano S, Umeda H, Kitani Y, Omori K, Nakamura T, Ito J. Glottal reconstruction with a tissue engineering technique using polypropylene mesh: a canine experiment. Ann Otol Rhinol Laryngol 2010; 119:110-7. [PMID: 20336922 DOI: 10.1177/000348941011900208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The larynx must be resected in some cases of cancer or stenosis, and various techniques are generally employed to fill the resulting defect. No ideal way, however, has been established to restore vocal function after this form of insult. The aim of this preliminary feasibility study in a canine model was to investigate the effectiveness of a polypropylene-based tissue engineering approach to repair a partial glottal defect. METHODS Eight dogs were used in this study. A laryngeal defect involving resection of the left vocal fold was created through a thyroid cartilage window. A scaffold made of polypropylene and collagen was preclotted and wrapped with autologous fascia lata, inserted through the window, and sutured to the laryngeal defect in 5 dogs. The defect was reconstructed with an adjacent sternohyoid muscle flap in 3 control dogs. The surgical site was evaluated 3 months after operation by fiberscopic examination, computed tomographic imaging, histologic evaluation, and study of excised larynges. RESULTS On fiberscopic examination, the experimental group implants were completely covered with regenerated mucosa in all cases, and a favorable vocal fold contour was found in 4 of the 5 cases. One case was characterized by a concave vocal fold shape and red granulation. In the control group, the muscle flap was replaced by scarred mucosa with a concave vocal fold contour in 2 cases, and there was soft white granulation at the anterior resected edge in the third case. The histologic data revealed the regeneration of lined epithelium, subepithelial tissue, and muscle structure in both groups. The excised larynx phonatory data revealed reduced vibratory amplitude in the experimental group compared with the control group; however, excised phonation was not achieved in 2 of the 3 cases in the control group. CONCLUSIONS This polypropylene-based tissue engineering technique appears to be a viable tool for glottal reconstruction; however, additional refinement is required to maximize long-term phonatory function.
Collapse
Affiliation(s)
- Masaru Yamashita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bader A, Macchiarini P. Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med 2010; 14:1877-89. [PMID: 20406329 PMCID: PMC3823270 DOI: 10.1111/j.1582-4934.2010.01073.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In June 2008, the world's first whole tissue-engineered organ - the windpipe - was successfully transplanted into a 31-year-old lady, and about 18 months following surgery she is leading a near normal life without immunosuppression. This outcome has been achieved by employing three groundbreaking technologies of regenerative medicine: (i) a donor trachea first decellularized using a detergent (without denaturing the collagenous matrix), (ii) the two main autologous tracheal cells, namely mesenchymal stem cell derived cartilage-like cells and epithelial respiratory cells and (iii) a specifically designed bioreactor that reseed, before implantation, the in vitro pre-expanded and pre-differentiated autologous cells on the desired surfaces of the decellularized matrix. Given the long-term safety, efficacy and efforts using such a conventional approach and the potential advantages of regenerative implants to make them available for anyone, we have investigated a novel alternative concept how to fully avoid in vitro cell replication, expansion and differentiation, use the human native site as micro-niche, potentiate the human body's site-specific response by adding boosting, permissive and recruitment impulses in full respect of sociological and regulatory prerequisites. This tissue-engineered approach and ongoing research in airway transplantation is reviewed and presented here.
Collapse
Affiliation(s)
- Augustinus Bader
- Centre for Biotechnology and Biomedicine, Department of Applied Stem Cell Biology and Cell Techniques, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
30
|
Park J, Zhang JJR, Choi R, Trinh I, Kim PCW. A simple in vitro culture system for tracheal cartilage development. In Vitro Cell Dev Biol Anim 2009; 46:92-6. [PMID: 19915930 DOI: 10.1007/s11626-009-9255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.
Collapse
Affiliation(s)
- Jinhyung Park
- Department of Surgery and Program of Developmental Biology, The Hospital for Sick Children, 555 University Ave, Suite 1526, Toronto, ON, M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
31
|
A scaffold-bioreactor system for a tissue-engineered trachea. Biomaterials 2009; 30:4117-26. [DOI: 10.1016/j.biomaterials.2009.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 04/21/2009] [Indexed: 11/20/2022]
|
32
|
Experimental repair of tracheal defect using a bioabsorbable copolymer. J Surg Res 2008; 160:114-21. [PMID: 19482309 DOI: 10.1016/j.jss.2008.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND We investigated epithelialization and newly formed cartilage in an artificial trachea constructed using a bioabsorbable copolymer. MATERIALS AND METHODS Fifteen male Japanese white rabbits (2.5-2.8 kg) were divided into three groups. A full-thickness anterior defect (4 mm x 10 mm) was created in the trachea. The defect was implanted with one of the following bioabsorbable copolymers: caprolactone-lactide copolymer sponge sheet reinforced with poly(glycolic acid) fiber mesh (Cop) (n = 6, group A), Cop-incorporating gelatin hydrogel (n = 4, group B), and Cop-incorporating gelatin hydrogel with 100 microg of basic fibroblast growth factor (n = 5, group C). Each trachea was reinforced with an external nondegradable polymer stent. Three rabbits in each group were sacrificed at 1, 3, and 6 mo postoperatively and the trachea was evaluated histologically; other animals were sacrificed up to 12 mo postoperatively. RESULTS In groups A, B, and C there were two, one, and one postoperative deaths, respectively. In group A, epithelialization was recognized from 1 mo to 12 mo postoperatively, but no new cartilage was formed during the 12 mo following implantation. In group B, epithelialization was recognized 3 and 6 mo postoperatively, and new cartilage was detected at 6 mo after the operation. In group C, newly formed cartilage and epithelialization were observed 3, 6, and even 12 mo postoperatively. Furthermore, neovascularization was observed in groups B and C. CONCLUSIONS A bioabsorbable copolymer incorporating gelatin hydrogel induces tracheal epithelialization and formation of cartilage and vessels in tracheal defects, and could be available for clinical use in children.
Collapse
|
33
|
Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF. Morphologic Assessment of Extracellular Matrix Scaffolds for Patch Tracheoplasty in a Canine Model. Ann Thorac Surg 2008; 86:967-74; discussion 967-74. [DOI: 10.1016/j.athoracsur.2008.04.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 02/09/2023]
|
34
|
A polyethylene glycol grafted bi-layered polyurethane scaffold: preliminary study of a new candidate prosthesis for repair of a partial tracheal defect. Eur Arch Otorhinolaryngol 2008; 265:809-16. [DOI: 10.1007/s00405-007-0574-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|