1
|
Associations between the COVID-19 Pandemic and Hospital Infrastructure Adaptation and Planning—A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138195. [PMID: 35805855 PMCID: PMC9266736 DOI: 10.3390/ijerph19138195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022]
Abstract
The SARS-CoV-2 pandemic has put unprecedented pressure on the hospital sector around the world. It has shown the importance of preparing and planning in the future for an outbreak that overwhelms every aspect of a hospital on a rapidly expanding scale. We conducted a scoping review to identify, map, and systemize existing knowledge about the relationships between COVID-19 and hospital infrastructure adaptation and capacity planning worldwide. We searched the Web of Science, Scopus, and PubMed and hand-searched gray papers published in English between December 2019 and December 2021. A total of 106 papers were included: 102 empirical studies and four technical reports. Empirical studies entailed five reviews, 40 studies focusing on hospital infrastructure adaptation and planning during the pandemics, and 57 studies on modeling the hospital capacity needed, measured mostly by the number of beds. The majority of studies were conducted in high-income countries and published within the first year of the pandemic. The strategies adopted by hospitals can be classified into short-term (repurposing medical and non-medical buildings, remote adjustments, and establishment of de novo structures) and long-term (architectural and engineering modifications, hospital networks, and digital approaches). More research is needed, focusing on specific strategies and the quality assessment of the evidence.
Collapse
|
3
|
McCabe R, Kont MD, Schmit N, Whittaker C, Løchen A, Baguelin M, Knock E, Whittles LK, Lees J, Brazeau NF, Walker PGT, Ghani AC, Ferguson NM, White PJ, Donnelly CA, Hauck K, Watson OJ. Modelling intensive care unit capacity under different epidemiological scenarios of the COVID-19 pandemic in three Western European countries. Int J Epidemiol 2021; 50:753-767. [PMID: 33837401 PMCID: PMC8083295 DOI: 10.1093/ije/dyab034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has placed enormous strain on intensive care units (ICUs) in Europe. Ensuring access to care, irrespective of COVID-19 status, in winter 2020-2021 is essential. METHODS An integrated model of hospital capacity planning and epidemiological projections of COVID-19 patients is used to estimate the demand for and resultant spare capacity of ICU beds, staff and ventilators under different epidemic scenarios in France, Germany and Italy across the 2020-2021 winter period. The effect of implementing lockdowns triggered by different numbers of COVID-19 patients in ICUs under varying levels of effectiveness is examined, using a 'dual-demand' (COVID-19 and non-COVID-19) patient model. RESULTS Without sufficient mitigation, we estimate that COVID-19 ICU patient numbers will exceed those seen in the first peak, resulting in substantial capacity deficits, with beds being consistently found to be the most constrained resource. Reactive lockdowns could lead to large improvements in ICU capacity during the winter season, with pressure being most effectively alleviated when lockdown is triggered early and sustained under a higher level of suppression. The success of such interventions also depends on baseline bed numbers and average non-COVID-19 patient occupancy. CONCLUSION Reductions in capacity deficits under different scenarios must be weighed against the feasibility and drawbacks of further lockdowns. Careful, continuous decision-making by national policymakers will be required across the winter period 2020-2021.
Collapse
Affiliation(s)
- Ruth McCabe
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
- NIHR Health Research Protection Unit in Emerging and Zoonotic Diseases, The Ronald Ross Building, University of Liverpool, Liverpool, UK
| | - Mara D Kont
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Nora Schmit
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Alessandra Løchen
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Marc Baguelin
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Edward Knock
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Lilith K Whittles
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- NIHR Health Research Protection Unit in Modelling and Health Economics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London, UK
| | - John Lees
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Nicholas F Brazeau
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Patrick GT Walker
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Neil M Ferguson
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- NIHR Health Research Protection Unit in Modelling and Health Economics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Peter J White
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- NIHR Health Research Protection Unit in Modelling and Health Economics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- Modelling and Economics Unit, National Infection Service, Public Health England, London, UK
| | - Christl A Donnelly
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
- NIHR Health Research Protection Unit in Emerging and Zoonotic Diseases, The Ronald Ross Building, University of Liverpool, Liverpool, UK
- NIHR Health Research Protection Unit in Modelling and Health Economics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Katharina Hauck
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
- NIHR Health Research Protection Unit in Modelling and Health Economics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| | - Oliver J Watson
- MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, St Mary’s Campus, Norfolk Place, London, UK
| |
Collapse
|
4
|
Esmaeilzadeh P, Mirzaei T. Using Electronic Health Records to Mitigate Workplace Burnout Among Clinicians During the COVID-19 Pandemic: Field Study in Iran. JMIR Med Inform 2021; 9:e28497. [PMID: 34033578 PMCID: PMC8176947 DOI: 10.2196/28497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background The COVID-19 pandemic spread worldwide in 2020. Notably, in the countries dealing with massive casualties, clinicians have worked in new conditions characterized by a heavy workload and a high risk of being infected. The issue of clinician burnout during the pandemic has attracted considerable attention in health care research. Electronic health records (EHRs) provide health care workers with several features to meet a health system’s clinical needs. Objective We aim to examine how the use of EHR features affects the burnout of clinicians working in hospitals that have special wards for confirmed COVID-19 cases. Methods Using an online survey, we collected data from 368 physicians, physician assistants, and nurses working in six hospitals that have implemented EHRs in the city of Tehran in Iran. We used logistic regression to assess the association between burnout and awareness of EHR features, EHR system usability, concerns about COVID-19, technology solutions, hospital technology interventions, hospital preparedness, and professional efficacy adjusted for demographic and practice characteristics. Results The primary outcome of our study was self-reported burnout during the COVID-19 pandemic. Of the 368 respondents, 36% (n=134) reported having at least one symptom of burnout. Participants indicated that the leading cause of EHR-related stress is inadequate training for using technology (n=159, 43%), followed by having less face-to-face time with patients (n=140, 38%). Positive perceptions about the EHR’s ease of use were associated with lower odds of burnout symptoms. More interventions, such as clear communication of regulations; transparency in policies, expectations, and goals regarding the use of technology in the clinical workflow; and hospital preparedness to cope with the challenges of the pandemic, were associated with lower odds of burnout. Conclusions The use of EHR applications, hospital pandemic preparation programs, and transparent technology-related policies and procedures throughout the epidemic can be substantial mitigators of technology-based stress and clinician burnout. Hospitals will then be better positioned to devise or modify technology-related policies and procedures to support physicians’ and nurses’ well-being during the COVID-19 pandemic. Training programs, transparency in communications of regulations, and developing a clear channel for informing clinicians of changes in policies may help reduce burnout symptoms among physicians and nurses during a pandemic. Providing easily accessible mentorship through teleconsultation and 24-hour available information technology support may also help to mitigate the odds of burnout.
Collapse
Affiliation(s)
- Pouyan Esmaeilzadeh
- Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, United States
| | - Tala Mirzaei
- Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, United States
| |
Collapse
|