1
|
Regulation of the Membrane Trafficking of the Mechanosensitive Ion Channels TRPV1 and TRPV4 by Zonular Tension, Osmotic Stress and Activators in the Mouse Lens. Int J Mol Sci 2021; 22:ijms222312658. [PMID: 34884463 PMCID: PMC8657824 DOI: 10.3390/ijms222312658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.
Collapse
|
2
|
Guo Y, Lu C, Zhang L, Wan H, Jiang E, Chen Y, Dong H. Nutrient-induced hyperosmosis evokes vasorelaxation via TRPV1 channel-mediated, endothelium-dependent, hyperpolarisation in healthy and colitis mice. Br J Pharmacol 2020; 178:689-708. [PMID: 33169358 DOI: 10.1111/bph.15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In humans, blood flow in the mesenteric circulation is greatly increased after meals, but the mechanisms underlying postprandial mesenteric vasorelaxation induced by nutrients and whether this process is involved in the pathogenesis of colitis, are not well understood. Here we have studied the direct actions of nutrients on mesenteric arterial tone and the underlying molecular mechanisms in healthy and colitis mice. EXPERIMENTAL APPROACH Colitis in C57BL/6 mice was induced with dextran sodium sulphate. Nutrient-induced vasorelaxation of mesenteric arterioles from humans and mice was studied with wire myograph assays. Ca2+ and Na+ imaging were performed in human vascular endothelial cells and vascular smooth muscle cells, using selective pharmacological agents and shRNA knockdown of TRPV1 channels. KEY RESULTS Glucose, sodium and mannitol concentration-dependently induced endothelium-dependent relaxation of human and mouse mesenteric arterioles via hyperosmotic action,. Hyperosmosis-induced vasorelaxation was almost abolished by selective blockers for TRPV1, IKCa and SKCa channels. Glucose markedly stimulated Ca2+ influx through endothelial TRPV1 channels, an effect attenuated by selective blockers and shRNA knockdown of TRPV1 channels. Capsaicin synergised the glucose-induced vasorelaxation. Nutrient-induced hyperosmosis also activated Na+ /K+ -ATPase and the Na/Ca exchanger (NCX) to decrease [Ca2+ ]i in VSMCs. Glucose-induced vasorelaxation was impaired in mouse colitis. CONCLUSION AND IMPLICATIONS Nutrient-induced hyperosmosis evoked endothelium-dependent mesenteric vasorelaxation via the TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway to increase normal mucosal perfusion, which is impaired in our model of colitis. The TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway could provide novel drug targets for gastrointestinal diseases with hypoperfusion, such as chronic colitis and mesenteric ischaemia.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Enlai Jiang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yao Chen
- Department of Plastic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Chen Y, Gao J, Li L, Sellitto C, Mathias RT, Donaldson PJ, White TW. The Ciliary Muscle and Zonules of Zinn Modulate Lens Intracellular Hydrostatic Pressure Through Transient Receptor Potential Vanilloid Channels. Invest Ophthalmol Vis Sci 2020; 60:4416-4424. [PMID: 31639828 PMCID: PMC6808041 DOI: 10.1167/iovs.19-27794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Lenses have an intracellular hydrostatic pressure gradient to drive fluid from central fiber cells to surface epithelial cells. Pressure is regulated by a feedback control system that relies on transient receptor potential vanilloid (TRPV)1 and TRPV4 channels. The ciliary muscle transmits tension to the lens through the zonules of Zinn. Here, we have examined if ciliary muscle tension influenced the lens intracellular hydrostatic pressure gradient. Methods We measured the ciliary body position and intracellular hydrostatic pressures in mouse lenses while pharmacologically causing relaxation or contraction of the ciliary muscle. We also used inhibitors of TRPV1 and TRPV4, in addition to phosphoinositide 3-kinase (PI3K) p110α knockout mice and immunostaining of phosphorylated protein kinase B (Akt), to determine how changes in ciliary muscle tension resulted in altered hydrostatic pressure. Results Ciliary muscle relaxation increased the distance between the ciliary body and the lens and caused a decrease in intracellular hydrostatic pressure that was dependent on intact zonules and could be blocked by inhibition of TRPV4. Ciliary contraction moved the ciliary body toward the lens and caused an increase in intracellular hydrostatic pressure and Akt phosphorylation that required intact zonules and was blocked by either inhibition of TRPV1 or genetic deletion of the p110α catalytic subunit of PI3K. Conclusions These results show that the hydrostatic pressure gradient within the lens was influenced by the tension exerted on the lens by the ciliary muscle through the zonules of Zinn. Modulation of the gradient of intracellular hydrostatic pressure in the lens could alter the water content, and the gradient of refractive index.
Collapse
Affiliation(s)
- Yadi Chen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Junyuan Gao
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Leping Li
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Caterina Sellitto
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Richard T Mathias
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas W White
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| |
Collapse
|
4
|
Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res 2017; 56:e1-e24. [DOI: 10.1016/j.preteyeres.2016.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
5
|
Pasantes-Morales H. Channels and Volume Changes in the Life and Death of the Cell. Mol Pharmacol 2016; 90:358-70. [PMID: 27358231 DOI: 10.1124/mol.116.104158] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Volume changes deviating from original cell volume represent a major challenge for cellular homeostasis. Cell volume may be altered either by variations in the external osmolarity or by disturbances in the transmembrane ion gradients that generate an osmotic imbalance. Cells respond to anisotonicity-induced volume changes by active regulatory mechanisms that modify the intracellular/extracellular concentrations of K(+), Cl(-), Na(+), and organic osmolytes in the direction necessary to reestablish the osmotic equilibrium. Corrective osmolyte fluxes permeate across channels that have a relevant role in cell volume regulation. Channels also participate as causal actors in necrotic swelling and apoptotic volume decrease. This is an overview of the types of channels involved in either corrective or pathologic changes in cell volume. The review also underlines the contribution of transient receptor potential (TRP) channels, notably TRPV4, in volume regulation after swelling and describes the role of other TRPs in volume changes linked to apoptosis and necrosis. Lastly we discuss findings showing that multimers derived from LRRC8A (leucine-rich repeat containing 8A) gene are structural components of the volume-regulated Cl(-) channel (VRAC), and we underline the intriguing possibility that different heteromer combinations comprise channels with different intrinsic properties that allow permeation of the heterogenous group of molecules acting as organic osmolytes.
Collapse
Affiliation(s)
- Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Are Aquaporins the Missing Transmembrane Osmosensors? J Membr Biol 2015; 248:753-65. [PMID: 25791748 DOI: 10.1007/s00232-015-9790-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
Abstract
Regulation of cell volume is central to homeostasis. It is assumed to begin with the detection of a change in water potential across the bounding membrane, but it is not clear how this is accomplished. While examples of general osmoreceptors (which sense osmotic pressure in one phase) and stretch-activated ion channels (which require swelling of a cell or organelle) are known, effective volume regulation requires true transmembrane osmosensors (TMOs) which directly detect a water potential difference spanning a membrane. At present, no TMO molecule has been unambiguously identified, and clear evidence for mammalian TMOs is notably lacking. In this paper, we set out a theory of TMOs which requires a water channel spanning the membrane that excludes the major osmotic solutes, responds directly without the need for any other process such as swelling, and signals to other molecules associated with the magnitude of changing osmotic differences. The most likely molecules that are fit for this purpose and which are also ubiquitous in eukaryotic cells are aquaporins (AQPs). We review experimental evidence from several systems which indicates that AQPs are essential elements in regulation and may be functioning as TMOs; i.e. the first step in an osmosensing sequence that signals osmotic imbalance in a cell or organelle. We extend this concept to several systems of current interest in which the cellular involvement of AQPs as simple water channels is puzzling or counter-intuitive. We suggest that, apart from regulatory volume changes in cells, AQPs may also be acting as TMOs in red cells, secretory granules and microorganisms.
Collapse
|
7
|
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A. Trafficking of ThermoTRP Channels. MEMBRANES 2014; 4:525-64. [PMID: 25257900 PMCID: PMC4194048 DOI: 10.3390/membranes4030525] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
ThermoTRP channels (thermoTRPs) define a subfamily of the transient receptor potential (TRP) channels that are activated by changes in the environmental temperature, from noxious cold to injurious heat. Acting as integrators of several stimuli and signalling pathways, dysfunction of these channels contributes to several pathological states. The surface expression of thermoTRPs is controlled by both, the constitutive and regulated vesicular trafficking. Modulation of receptor surface density during pathological processes is nowadays considered as an interesting therapeutic approach for management of diseases, such as chronic pain, in which an increased trafficking is associated with the pathological state. This review will focus on the recent advances trafficking of the thermoTRP channels, TRPV1, TRPV2, TRPV4, TRPM3, TRPM8 and TRPA1, into/from the plasma membrane. Particularly, regulated membrane insertion of thermoTRPs channels contributes to a fine tuning of final channel activity, and indeed, it has resulted in the development of novel therapeutic approaches with successful clinical results such as disruption of SNARE-dependent exocytosis by botulinum toxin or botulinomimetic peptides.
Collapse
Affiliation(s)
| | - Sakthikumar Mathivanan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Christoph Jakob Wolf
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| |
Collapse
|
8
|
Shachar-Hill B, Hill AE, Powell J, Skepper JN, Shachar-Hill Y. Mercury-sensitive water channels as possible sensors of water potentials in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5195-205. [PMID: 24098048 PMCID: PMC3830494 DOI: 10.1093/jxb/ert311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10(-3) cm s(-1). Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed.
Collapse
Affiliation(s)
| | - Adrian E. Hill
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
- * To whom correspondence should be addressed. E-mail:
| | - Janet Powell
- Multi-Imaging Centre, Cambridge University, Cambridge, UK
| | | | - Yair Shachar-Hill
- Department of Plant Biology, Plant Biology Building, Michigan State University, East Lansing, MI 48824-1312, USA
| |
Collapse
|
9
|
Abstract
Recent studies have introduced the importance of transient receptor potential vanilloid subtype 4 (TRPV4) channels in the regulation of vascular tone. TRPV4 channels are expressed in both endothelium and vascular smooth muscle cells and can be activated by numerous stimuli including mechanical (eg, shear stress, cell swelling, and heat) and chemical (eg, epoxyeicosatrienoic acids, endocannabinoids, and 4α-phorbol esters). In the brain, TRPV4 channels are primarily localized to astrocytic endfeet processes, which wrap around blood vessels. Thus, TRPV4 channels are strategically localized to sense hemodynamic changes and contribute to the regulation of vascular tone. TRPV4 channel activation leads to smooth muscle cell hyperpolarization and vasodilation. Here, we review recent findings on the cellular mechanisms underlying TRPV4-mediated vasodilation; TRPV4 channel interaction with other proteins including transient receptor potential channel 1, small conductance (K(Ca)2.3), and large conductance (K(Ca)1.1) calcium-activated potassium-selective channels; and the importance of caveolin-rich domains for these interactions to take place.
Collapse
|
10
|
Abstract
Cerebral blood flow is controlled by two crucial processes, cerebral autoregulation (CA) and neurovascular coupling (NVC) or functional hyperemia. Whereas CA ensures constant blood flow over a wide range of systemic pressures, NVC ensures rapid spatial and temporal increases in cerebral blood flow in response to neuronal activation. The focus of this review is to discuss the cellular mechanisms by which astrocytes contribute to the regulation of vascular tone in terms of their participation in NVC and, to a lesser extent, CA. We discuss evidence for the various signaling modalities by which astrocytic activation leads to vasodilation and vasoconstriction of parenchymal arterioles. Moreover, we provide a rationale for the contribution of astrocytes to pressure-induced increases in vascular tone via the vasoconstrictor 20-HETE (a downstream metabolite of arachidonic acid). Along these lines, we highlight the importance of the transient receptor potential channel of the vanilloid family (TRPV4) as a key molecular determinant in the regulation of vascular tone in cerebral arterioles. Finally, we discuss current advances in the technical tools available to study NVC mechanisms in the brain as it relates to the participation of astrocytes.
Collapse
|
11
|
Boychuk CR, Zsombok A, Tasker JG, Smith BN. Rapid Glucocorticoid-Induced Activation of TRP and CB1 Receptors Causes Biphasic Modulation of Glutamate Release in Gastric-Related Hypothalamic Preautonomic Neurons. Front Neurosci 2013; 7:3. [PMID: 23386808 PMCID: PMC3560102 DOI: 10.3389/fnins.2013.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN) by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX) on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ∼50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide (AEA) and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1) receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1 knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and endogenous cannabinoids.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine Lexington, KY, USA
| | | | | | | |
Collapse
|
12
|
Pedersen SF, Kapus A, Hoffmann EK. Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 2011; 22:1587-97. [PMID: 21852585 DOI: 10.1681/asn.2010121284] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular osmolarity and whole body volume homeostasis. There are a variety of molecular signals that respond to perturbations in cell volume and osmosensors or volume sensors responding to these signals. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels. We also present current evidence on the localization and function of central and peripheral systemic osmosensors and conclude with a brief look at the still limited evidence on pathophysiological conditions associated with deranged sensing of cell volume.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
13
|
An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci U S A 2011; 108:2563-8. [PMID: 21262839 DOI: 10.1073/pnas.1012867108] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulatory volume decrease (RVD) is a key mechanism for volume control that serves to prevent detrimental swelling in response to hypo-osmotic stress. The molecular basis of RVD is not understood. Here we show that a complex containing aquaporin-4 (AQP4) and transient receptor potential vanilloid 4 (TRPV4) is essential for RVD in astrocytes. Astrocytes from AQP4-KO mice and astrocytes treated with TRPV4 siRNA fail to respond to hypotonic stress by increased intracellular Ca(2+) and RVD. Coimmunoprecipitation and immunohistochemistry analyses show that AQP4 and TRPV4 interact and colocalize. Functional analysis of an astrocyte-derived cell line expressing TRPV4 but not AQP4 shows that RVD and intracellular Ca(2+) response can be reconstituted by transfection with AQP4 but not with aquaporin-1. Our data indicate that astrocytes contain a TRPV4/AQP4 complex that constitutes a key element in the brain's volume homeostasis by acting as an osmosensor that couples osmotic stress to downstream signaling cascades.
Collapse
|
14
|
Abstract
The somatosensory effects of natural products such as capsaicin, mustard oil, and menthol have been long recognized. Over the last decade, the identification of transient receptor potential (TRP) channels in primary sensory neurons as the targets for these agents has led to an explosion of research into the roles of "thermoTRPs" TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8 in nociception. In concert, through the efforts of many industrial and academic teams, a number of agonists and antagonists of these channels have been discovered, paving the way for a better understanding of sensory biology and, potentially, for novel treatments for diseases.
Collapse
Affiliation(s)
- S R Eid
- Department of Pain Research, Neuroscience Drug Discovery, Merck Research Laboratories, West Point, Philadelphia, USA.
| | | |
Collapse
|
15
|
Carreño FR, Ji LL, Cunningham JT. Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol 2008; 296:R454-66. [PMID: 19091909 DOI: 10.1152/ajpregu.90460.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inappropriate vasopressin (AVP) release causes dilutional hyponatremia in many pathophysiological states such as cirrhosis. The central molecular mechanisms that mediate inappropriate AVP release are unknown. We tested the hypothesis that changes in the expression or trafficking of TRPV4 in the central nervous system may contribute to inappropriate AVP release in the bile duct ligation (BDL) model of cirrhosis in the rat. Four weeks after surgery, BDL rats demonstrated significantly increased plasma vasopressin and plasma renin activity (PRA), hypervolemia, and decreased plasma osmolality. These effects were blocked by providing BDL rats with 2% saline to drink for 15 days. TRPV4 protein expression was significantly increased in brain punches from BDL rats containing the supraoptic nucleus (SON) of the hypothalamus (100% +/- 11 to 157% +/- 4.8), and this effect was blocked in BDL rats given saline. Immunohistochemistry demonstrated a significant increase in TRPV4-positive cells and the percentage of AVP neurons that also were TRPV4-positive in the SON of BDL rats. In the hypothalamus of BDL rats, TRPV4 lipid raft association increased compared with sham (from 100% +/- 2.1 to 326.1% +/- 16). This effect was significantly attenuated in BDL rats given 2% saline to drink (174% +/- 11). In the brain stem, TRPV4 lipid raft association was reduced by BDL and inversely related to plasma AVP and PRA. We speculate that changes in TRPV4 expression and compartmentalization within lipid rafts could contribute to a feed-forward mechanism related to AVP release in cirrhosis.
Collapse
Affiliation(s)
- Flávia Regina Carreño
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
16
|
Garcia-Elias A, Lorenzo IM, Vicente R, Valverde MA. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem 2008; 283:31284-8. [PMID: 18826956 DOI: 10.1074/jbc.c800184200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the non-selective cation channel TRPV4 by mechanical and osmotic stimuli requires the involvement of phospholipase A2 and the subsequent production of the arachidonic acid metabolites, epoxieicosatrienoic acids (EET). Previous studies have shown that inositol trisphosphate (IP3) sensitizes TRPV4 to mechanical, osmotic, and direct EET stimulation. We now search for the IP3 receptor-binding site on TRPV4 and its relevance to IP3-mediated sensitization. Three putative sites involved in protein-protein interactions were evaluated: a proline-rich domain (PRD), a calmodulin (CaM)-binding site, and the last four amino acids (DAPL) that show a PDZ-binding motif-like. TRPV4-DeltaCaM-(Delta812-831) channels preserved activation by hypotonicity, 4alpha-phorbol 12,13-didecanoate, and EET but lost their physical interaction with IP3 receptor 3 and IP3-mediated sensitization. Deletion of a PDZ-binding motif-like (TRPV4-DeltaDAPL) did not affect channel activity or IP3-mediated sensitization, whereas TRPV4-DeltaPRD-(Delta132-144) resulted in loss of channel function despite correct trafficking. We conclude that IP3-mediated sensitization requires IP3 receptor binding to a TRPV4 C-terminal domain that overlaps with a previously described calmodulin-binding site.
Collapse
Affiliation(s)
- Anna Garcia-Elias
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Edifici PRBB, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
17
|
Schliebe N, Strotmann R, Busse K, Mitschke D, Biebermann H, Schomburg L, Köhrle J, Bär J, Römpler H, Wess J, Schöneberg T, Sangkuhl K. V2 vasopressin receptor deficiency causes changes in expression and function of renal and hypothalamic components involved in electrolyte and water homeostasis. Am J Physiol Renal Physiol 2008; 295:F1177-90. [PMID: 18715941 DOI: 10.1152/ajprenal.00465.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyuria, hypernatremia, and hypovolemia are the major clinical signs of inherited nephrogenic diabetes insipidus (NDI). Hypernatremia is commonly considered a secondary sign caused by the net loss of water due to insufficient insertion of aquaporin-2 water channels into the apical membrane of the collecting duct cells. In the present study, we employed transcriptome-wide expression analysis to study gene expression in V2 vasopressin receptor (Avpr2)-deficient mice, an animal model for X-linked NDI. Gene expression changes in NDI mice indicate increased proximal tubular sodium reabsorption. Expression of several key genes including Na+-K+-ATPase and carbonic anhydrases was increased at the mRNA levels and accompanied by enhanced enzyme activities. In addition, altered expression was also observed for components of the eicosanoid and thyroid hormone pathways, including cyclooxygenases and deiodinases, in both kidney and hypothalamus. These effects are likely to contribute to the clinical NDI phenotype. Finally, our data highlight the involvement of the renin-angiotensin-aldosterone system in NDI pathophysiology and provide clues to explain the effectiveness of diuretics and indomethacin in the treatment of NDI.
Collapse
Affiliation(s)
- Nicole Schliebe
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|