1
|
Zhang SC, Nikolova AP, Kamrava M, Mak RH, Atkins KM. A roadmap for modelling radiation-induced cardiac disease. J Med Imaging Radiat Oncol 2024. [PMID: 38985978 DOI: 10.1111/1754-9485.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Cardiac risk mitigation is a major priority in improving outcomes for cancer survivors as advances in cancer screening and treatments continue to decrease cancer mortality. More than half of adult cancer patients will be treated with radiotherapy (RT); therefore it is crucial to develop a framework for how to assess and predict radiation-induced cardiac disease (RICD). Historically, RICD was modelled solely using whole heart metrics such as mean heart dose. However, data over the past decade has identified cardiac substructures which outperform whole heart metrics in predicting for significant cardiac events. Additionally, non-RT factors such as pre-existing cardiovascular risk factors and toxicity from other therapies contribute to risk of future cardiac events. In this review, we aim to discuss the current evidence and knowledge gaps in predicting RICD and provide a roadmap for the development of comprehensive models based on three interrelated components, (1) baseline CV risk assessment, (2) cardiac substructure radiation dosimetry linked with cardiac-specific outcomes and (3) novel biomarker development.
Collapse
Affiliation(s)
- Samuel C Zhang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andriana P Nikolova
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Raymond H Mak
- Department of Radiation Oncology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katelyn M Atkins
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Sheppard AJ, Theng EH, Paravastu SS, Wojnowski NM, Farhadi F, Morris MA, Hartley IR, Rachel IG, Roszko KL, Collins MT, Saboury B. Spatial Atlas for Mapping Vascular Microcalcification Using 18F-NaF PET/CT: Application in Hyperphosphatemic Familial Tumoral Calcinosis. Arterioscler Thromb Vasc Biol 2024; 44:1432-1446. [PMID: 38660800 PMCID: PMC11111330 DOI: 10.1161/atvbaha.123.320455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular calcification causes significant morbidity and occurs frequently in diseases of calcium/phosphate imbalance. Radiolabeled sodium fluoride positron emission tomography/computed tomography has emerged as a sensitive and specific method for detecting and quantifying active microcalcifications. We developed a novel technique to quantify and map total vasculature microcalcification to a common space, allowing simultaneous assessment of global disease burden and precise tracking of site-specific microcalcifications across time and individuals. METHODS To develop this technique, 4 patients with hyperphosphatemic familial tumoral calcinosis, a monogenic disorder of FGF23 (fibroblast growth factor-23) deficiency with a high prevalence of vascular calcification, underwent radiolabeled sodium fluoride positron emission tomography/computed tomography imaging. One patient received serial imaging 1 year after treatment with an IL-1 (interleukin-1) antagonist. A radiolabeled sodium fluoride-based microcalcification score, as well as calcification volume, was computed at all perpendicular slices, which were then mapped onto a standardized vascular atlas. Segment-wise mCSmean and mCSmax were computed to compare microcalcification score levels at predefined vascular segments within subjects. RESULTS Patients with hyperphosphatemic familial tumoral calcinosis had notable peaks in microcalcification score near the aortic bifurcation and distal femoral arteries, compared with a control subject who had uniform distribution of vascular radiolabeled sodium fluoride uptake. This technique also identified microcalcification in a 17-year-old patient, who had no computed tomography-defined calcification. This technique could not only detect a decrease in microcalcification score throughout the patient treated with an IL-1 antagonist but it also identified anatomic areas that had increased responsiveness while there was no change in computed tomography-defined macrocalcification after treatment. CONCLUSIONS This technique affords the ability to visualize spatial patterns of the active microcalcification process in the peripheral vasculature. Further, this technique affords the ability to track microcalcifications at precise locations not only across time but also across subjects. This technique is readily adaptable to other diseases of vascular calcification and may represent a significant advance in the field of vascular biology.
Collapse
Affiliation(s)
- Aaron J Sheppard
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Louisiana State University Health Shreveport, School of Medicine, Shreveport, LA, 71103
| | - Elizabeth H Theng
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Department of Radiology, Stanford School of Medicine, Stanford, CA, 94304
| | - Sriram S Paravastu
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- University of Missouri – Kansas City School of Medicine, Kansas City, MO, 64108
| | - Natalia M Wojnowski
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892
- Geisel School of Medicine, Dartmouth, Hanover, NH, 03755
- Institute of Nuclear Medicine, Bethesda, MD, USA
| | | | - Iris R Hartley
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - I Gafni Rachel
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Kelly L Roszko
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Michael T Collins
- National Institutes of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, 20892
- Institute of Nuclear Medicine, Bethesda, MD, USA
| |
Collapse
|
3
|
Kwiecinski J. Role of 18F-sodium fluoride positron emission tomography in imaging atherosclerosis. J Nucl Cardiol 2024; 35:101845. [PMID: 38479575 DOI: 10.1016/j.nuclcard.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Atherosclerosis involving vascular beds across the human body remains the leading cause of death worldwide. Coronary and peripheral artery disease, which are almost universally a result of atherosclerotic plaque, can manifest clinically as myocardial infarctions, ischemic stroke, or acute lower-limb ischemia. Beyond imaging myocardial perfusion and blood-flow, nuclear imaging has the potential to depict the activity of the processes that are directly implicated in the atherosclerotic plaque progression and rupture. Out of several tested tracers to date, the literature is most advanced for 18F-sodium fluoride positron emission tomography. In this review, we present the latest data in the field of atherosclerotic 18F-sodium fluoride positron emission tomography imaging, discuss the advantages and limitation of the techniques, and highlight the aspects that require further research in the future.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
4
|
Singh SB, Ng SJ, Lau HC, Khanal K, Bhattarai S, Paudyal P, Shrestha BB, Naseer R, Sandhu S, Gokhale S, Raynor WY. Emerging PET Tracers in Cardiac Molecular Imaging. Cardiol Ther 2023; 12:85-99. [PMID: 36593382 PMCID: PMC9986170 DOI: 10.1007/s40119-022-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/26/2022] [Indexed: 01/04/2023] Open
Abstract
18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) represent emerging PET tracers used to assess atherosclerosis-related inflammation and molecular calcification, respectively. By localizing to sites with high glucose utilization, FDG has been used to assess myocardial viability for decades, and its role in evaluating cardiac sarcoidosis has come to represent a major application. In addition to determining late-stage changes such as loss of perfusion or viability, by targeting mechanisms present in atherosclerosis, PET-based techniques have the ability to characterize atherogenesis in the early stages to guide intervention. Although it was once thought that FDG would be a reliable indicator of ongoing plaque formation, micro-calcification as portrayed by NaF-PET/CT appears to be a superior method of monitoring disease progression. PET imaging with NaF has the additional advantage of being able to determine abnormal uptake due to coronary artery disease, which is obscured by physiologic myocardial activity on FDG-PET/CT. In this review, we discuss the evolving roles of FDG, NaF, and other PET tracers in cardiac molecular imaging.
Collapse
Affiliation(s)
- Shashi Bhushan Singh
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Kishor Khanal
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Division of Cardiology, Memorial Healthcare System, 3501 Johnson Street, Hollywood, FL, 33021, USA
| | - Sanket Bhattarai
- Department of Medicine, KIST Medical College, Mahalaxmi 01, Lalitpur, Bagmati, Nepal
| | - Pranita Paudyal
- West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Bimash Babu Shrestha
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Rizwan Naseer
- Department of Medicine, Crozer-Chester Medical Center, 1 Medical Center Boulevard, Upland, PA, 19013, USA
| | - Simran Sandhu
- College of Health and Human Development, Pennsylvania State University, 10 East College Avenue, University Park, PA, 16802, USA
| | - Saket Gokhale
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, MEB #404, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Ng SJ, Lau HC, Naseer R, Sandhu S, Raynor WY, Werner TJ, Alavi A. Atherosclerosis Imaging. PET Clin 2023; 18:71-80. [DOI: 10.1016/j.cpet.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Raynor WY, Borja AJ, Zhang V, Kothekar E, Lau HC, Ng SJ, Seraj SM, Rojulpote C, Taghvaei R, Jin KY, Werner TJ, Høilund-Carlsen PF, Alavi A, Revheim ME. Assessing Coronary Artery and Aortic Calcification in Patients with Prostate Cancer Using 18F-Sodium Fluoride PET/Computed Tomography. PET Clin 2022; 17:653-659. [DOI: 10.1016/j.cpet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Kwiecinski J, Dweck MR. Artificial intelligence-based quantification of cardiac 18F-sodium fluoride uptake. J Nucl Cardiol 2022; 29:2540-2542. [PMID: 34448093 DOI: 10.1007/s12350-021-02791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Fiz F, Piccardo A, Morbelli S, Bottoni G, Piana M, Cabria M, Bagnasco M, Sambuceti G. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study. J Nucl Cardiol 2022; 29:1713-1723. [PMID: 33630243 DOI: 10.1007/s12350-021-02556-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE 18F-NaF-PET/CT can detect mineral metabolism within atherosclerotic plaques. To ascertain whether their 18F-NaF uptake purports progression, this index was compared with subsequent morphologic evolution. METHODS 71 patients underwent two consecutive 18F-NaF-PET/CTs (PET1/PET2). In PET1, non-calcified 18F-NaF hot spots were identified in the abdominal aorta. Their mean/max HU was compared with those of a non-calcified control region (CR) and with corresponding areas in PET2. A target-to-background ratio (TBR), mean density (HU), and calcium score (CS) were calculated on calcified atherosclerotic plaques in PET1 and compared with those in PET2. A VOI including the entire abdominal aorta was drawn; mean TBR and total CS were calculated on PET1 and compared with those PET2. RESULTS Hot spots in PET1 (N = 179) had a greater HU than CR (48 ± 8 vs 37 ± 9, P < .01). Mean hot spots HU increased to 59 ± 12 in PET2 (P < .001). New calcifications appeared at the hot spots site in 73 cases (41%). Baseline atherosclerotic plaque's (N = 375) TBR was proportional to percent HU and CS increase (P < .01 for both). Aortic CS increased (P < .001); the whole-aorta TBR in PET1 correlated with the CS increase between the baseline and the second PET/CT (R = .63, P < .01). CONCLUSIONS 18F-NaF-PET/CT depicts the early stages of plaques development and tracks their evolution over time.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni, 56, Rozzano, 20089, Milan, Italy.
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Michele Piana
- Department of Mathematics, University of Genoa, Via Dodecaneso, 35, 16146, Genoa, Italy
| | - Manlio Cabria
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Marcello Bagnasco
- Department of Internal Medicine and Medical specialties, University of Genoa, Viale Benedetto XV, 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
9
|
Takx RAP, van Asperen R, Bartstra JW, Zwakenberg SR, Wolterink JM, Celeng C, de Jong PA, Beulens JW. Determinants of 18F-NaF uptake in femoral arteries in patients with type 2 diabetes mellitus. J Nucl Cardiol 2021; 28:2700-2705. [PMID: 32185685 PMCID: PMC8709815 DOI: 10.1007/s12350-020-02099-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The goal of this study was to investigate the potential determinants of 18F-NaF uptake in femoral arteries as a marker of arterial calcification in patients with type 2 diabetes and a history of arterial disease. METHODS AND RESULTS The study consisted of participants of a randomized controlled trial to investigate the effect of vitamin K2 (NCT02839044). In this prespecified analysis, subjects with type 2 diabetes and known arterial disease underwent full body 18F-NaF PET/CT. Target-to-background ratio (TBR) was calculated by dividing the mean SUVmax from both superficial femoral arteries by the SUVmean in the superior vena cava (SVC) and calcium mass was measured on CT. The association between 18F-NaF TBR and cardiovascular risk factors was investigated using uni- and multivariate linear regression corrected for age and sex. In total, 68 patients (mean age: 69 ± 8 years; male: 52) underwent 18F-NaF PET/CT. Higher CT calcium mass, total cholesterol, and HbA1c were associated with higher 18F-NaF TBR after adjusting. CONCLUSION This study shows that several modifiable cardiovascular risk factors (total cholesterol, triglycerides, HbA1c) are associated with femoral 18F-NaF tracer uptake in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Richard A P Takx
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Ruth van Asperen
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jonas W Bartstra
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sabine R Zwakenberg
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelmer M Wolterink
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Csilla Celeng
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Joline W Beulens
- Department of Epidemiology & Biostatistics, Amsterdam Public Health Research Institute, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Yang S, Cai J, He Y, Sun C, Lian X. Usability of Ultrasonic MicroPure Imaging for Evaluating the Vulnerability of Carotid Atherosclerotic Plaques. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2727-2734. [PMID: 33634910 DOI: 10.1002/jum.15671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE MicroPure is an ultrasound imaging technology used for detecting microcalcifications. This study aimed to evaluate the usefulness of the Firefly sign in ultrasonic MicroPure imaging for detecting the vulnerability of carotid plaques. METHODS Ultrasonic grey-scale imaging was used to detect carotid plaques. Ultrasonic MicroPure imaging was used to detect the Firefly sign and to determine the location and number of Firefly signs. RESULTS A total of 142 plaques were detected in 72 patients, and 62.0% were Firefly-positive plaques. The length or thickness, the risk of rupture and the percentage of vulnerable plaques were greater in the Firefly-positive plaques than in Firefly-negative plaques. The assessment of plaque vulnerability built on the 4-point Firefly scoring system showed that the area under the ROC curve was 0.750 (P < .001). The sensitivity and specificity of vulnerable plaques with a score of 2 points were 71.9 and 73.6%, respectively. CONCLUSION The Firefly signs are widely present in carotid atherosclerotic plaques and can be detected with ultrasonic MicroPure imaging. Firefly signs located in fibrous caps may be associated with plaque vulnerability.
Collapse
Affiliation(s)
- Song Yang
- Department of Neurology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Cai
- Department of Neuroscience, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ying He
- Department of Ultrasound, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chuxue Sun
- Department of Ultrasound, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xuegan Lian
- Department of Neurology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
11
|
Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, Lau HC, Høilund-Carlsen PF, Alavi A, Revheim ME. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics (Basel) 2021; 11:diagnostics11122234. [PMID: 34943473 PMCID: PMC8700072 DOI: 10.3390/diagnostics11122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG) represents a method of detecting and characterizing arterial wall inflammation, with potential applications in the early assessment of vascular disorders such as atherosclerosis. By portraying early-stage molecular changes, FDG-PET findings have previously been shown to correlate with atherosclerosis progression. In addition, recent studies have suggested that microcalcification revealed by 18F-sodium fluoride (NaF) may be more sensitive at detecting atherogenic changes compared to FDG-PET. In this review, we summarize the roles of FDG and NaF in the assessment of atherosclerosis and discuss the role of global assessment in quantification of the vascular disease burden. Furthermore, we will review the emerging applications of FDG-PET in various vascular disorders, including pulmonary embolism, as well as inflammatory and infectious vascular diseases.
Collapse
Affiliation(s)
- William Y. Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Austin J. Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Yusha Sun
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
- Correspondence: or
| |
Collapse
|
12
|
Toczek J. Evolution of arterial [ 18F]-sodium fluoride uptake and calcification. J Nucl Cardiol 2021; 28:1946-1948. [PMID: 31792919 DOI: 10.1007/s12350-019-01969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, USA.
| |
Collapse
|
13
|
Silva Mendes BI, Oliveira-Santos M, Vidigal Ferreira MJ. Sodium fluoride in cardiovascular disorders: A systematic review. J Nucl Cardiol 2021; 28:1461-1473. [PMID: 31388965 DOI: 10.1007/s12350-019-01832-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND 18-Fluorine sodium fluoride is a well-known radiotracer used for bone metastasis diagnosis. Its uptake correlation with cardiovascular (CV) risk was primarily suggested in oncological patients. Moreover, as a specific marker of microcalcification, it seems to correlate with CV disease progression and plaque instability. METHODS AND RESULTS Our purpose was to systematically review clinical studies that characterized the use of this marker in CV conditions. In atherosclerosis, most studies report a positive correlation with the burden of CV risk factors and vascular calcification. A higher uptake was found in culprit plaques/rupture sites in coronary and carotid arteries and it was also linked to high-risk features in histology and intravascular imaging analysis of the plaques. In aortic stenosis, this tracer displayed an increasing uptake with disease severity. CONCLUSIONS Sodium fluoride positron emission tomography is a promising non-invasive technique to identify high-risk plaques, which sets ground to a potential use of this tracer in evaluating atherosclerotic disease progression and degenerative changes in aortic valve stenosis. Nevertheless, there is a need for further prospective evidence that demonstrates this technique's value in predicting clinical events, adjusting treatment strategies, and improving patient outcomes.
Collapse
Affiliation(s)
- Beatriz Isabel Silva Mendes
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal.
| | - Manuel Oliveira-Santos
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| | - Maria João Vidigal Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| |
Collapse
|
14
|
Piri R, Lici G, Riyahimanesh P, Gerke O, Alavi A, Høilund-Carlsen PF. Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 2021; 37:3115-3126. [PMID: 33950330 DOI: 10.1007/s10554-021-02263-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
To examine 2-year changes in carotid and aortic 18F-sodium fluoride (NaF) uptake in both healthy controls and angina pectoris patients. Twenty-nine healthy subjects and 20 angina pectoris patients underwent 90-min NaF-PET/CT twice 2 years apart. The carotids and three sections of the aorta (arch, thoracic, abdominal) were manually segmented. NaF uptake was expressed as the mean and total standardized uptake values without and with partial volume correction (SUVmean, SUVtotal and pvcSUVmean, pvcSUVtotal). Insignificant tendencies were higher NaF uptake in angina patients at both time points with less uptake in healthy subjects and higher uptake in angina patients after 2 years. Thus, aortic pvcSUVmean of angina patients was 1.14 ± 0.35 and 1.29 ± 0.71 at baseline and after 2 years vs. 0.99 ± 0.31 and 0.95 ± 0.28 in healthy subjects. A similar pattern was observed for the carotid pvcSUVmean. NaF uptake at baseline could not predict a change in CT-calcification after 2 years. NaF uptake in all parts of the aorta correlated positively with age. There was an insignificant, but consistent, tendency for slightly higher arterial NaF uptake in the angina group indicating more ongoing microcalcification at both time points in patients than healthy subjects. The 2-year changes were in both groups very small suggesting that the atherosclerotic process is slow, albeit with a tendency of slight decreases among healthy controls and slight increases in angina patients despite statin therapy in half of these.
Collapse
Affiliation(s)
- Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Gauher Lici
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Pooriya Riyahimanesh
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Castro SA, Muser D, Lee H, Hancin EC, Borja AJ, Acosta O, Werner TJ, Thomassen A, Constantinescu C, Høilund-Carlsen PF, Alavi A. Carotid artery molecular calcification assessed by [ 18F]fluoride PET/CT: correlation with cardiovascular and thromboembolic risk factors. Eur Radiol 2021; 31:8050-8059. [PMID: 33866386 DOI: 10.1007/s00330-021-07917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES There is growing evidence that sodium fluoride ([18F]fluoride) PET/CT can detect active arterial calcifications at the molecular stage. We investigated the relationship between arterial mineralization in the left common carotid artery (LCC) assessed by [18F]fluoride PET/CT and cardiovascular/thromboembolic risk. METHODS In total, 128 subjects (mean age 48 ± 14 years, 51% males) were included. [18F]fluoride uptake in the LCC was quantitatively assessed by measuring the blood-pool-corrected maximum standardized uptake value (SUVmax) on each axial slice. Average SUVmax (aSUVmax) was calculated over all slices and correlated with 10-year risk of cardiovascular events estimated by the Framingham model, CHA2DS2-VASc score, and level of physical activity (LPA). RESULTS The aSUVmax was significantly higher in patients with increased risk of cardiovascular (one-way ANOVA, p < 0.01) and thromboembolic (one-way ANOVA, p < 0.01) events, and it was significantly lower in patients with greater LPA (one-way ANOVA, p = 0.02). On multivariable linear regression analysis, age ( = 0.07, 95% CI 0.05 - 0.10, p < 0.01), body mass index ( = 0.02, 95% CI 0.01 - 0.03, p < 0.01), arterial hypertension ( = 0.15, 95% CI 0.08 - 0.23, p < 0.01), and LPA ( = -0.10, 95% CI -0.19 to -0.02, p=0.02) were independent associations of aSUVmax. CONCLUSIONS Carotid [18F]fluoride uptake is significantly increased in patients with unfavorable cardiovascular and thromboembolic risk profiles. [18F]fluoride PET/CT could become a valuable tool to estimate subjects' risk of future cardiovascular events although still major trials are needed to further evaluate the associations found in this study and their potential clinical usefulness. KEY POINTS • Sodium fluoride ([18F]fluoride) PET/CT imaging identifies patients with early-stage atherosclerosis. • Carotid [18F]fluoride uptake is significantly higher in patients with increased risk of cardiovascular and thromboembolic events and inversely correlated with the level of physical activity. • Early detection of arterial mineralization at a molecular level could help guide clinical decisions in the context of cardiovascular risk assessment.
Collapse
Affiliation(s)
- Simon A Castro
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Quinnipiac University, St Vincent's Medical Center, Bridgeport, CT, USA
| | - Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Hwan Lee
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Quinnipiac University, St Vincent's Medical Center, Bridgeport, CT, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Oswaldo Acosta
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Anders Thomassen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Caius Constantinescu
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Mayer M, Borja AJ, Hancin EC, Auslander T, Revheim ME, Moghbel MC, Werner TJ, Alavi A, Rajapakse CS. Imaging Atherosclerosis by PET, With Emphasis on the Role of FDG and NaF as Potential Biomarkers for This Disorder. Front Physiol 2020; 11:511391. [PMID: 33192540 PMCID: PMC7642524 DOI: 10.3389/fphys.2020.511391] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular imaging has emerged in the past few decades as a novel means to investigate atherosclerosis. From a pathophysiological perspective, atherosclerosis is characterized by microscopic inflammation and microcalcification that precede the characteristic plaque buildup in arterial walls detected by traditional assessment methods, including anatomic imaging modalities. These processes of inflammation and microcalcification are, therefore, prime targets for molecular detection of atherosclerotic disease burden. Imaging with positron emission tomography/computed tomography (PET/CT) using 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) can non-invasively assess arterial inflammation and microcalcification, respectively. FDG uptake reflects glucose metabolism, which is particularly increased in atherosclerotic plaques retaining macrophages and undergoing hypoxic stress. By contrast, NaF uptake reflects the exchange of hydroxyl groups of hydroxyapatite crystals for fluoride producing fluorapatite, a key biochemical step in calcification of atherosclerotic plaque. Here we review the existing literature on FDG and NaF imaging and their respective values in investigating the progression of atherosclerotic disease. Based on the large volume of data that have been introduced to the literature and discussed in this review, it is clear that PET imaging will have a major role to play in assessing atherosclerosis in the major and coronary arteries. However, it is difficult to draw definitive conclusions on the potential role of FDG in investigating atherosclerosis given the vast number of studies with different designs, image acquisition methods, analyses, and interpretations. Our experience in this domain of research has suggested that NaF may be the tool of choice over FDG in assessing atherosclerosis, especially in the setting of coronary artery disease (CAD). Specifically, global NaF assessment appears to be superior in detecting plaques in tissues with high background FDG activity, such as the coronary arteries.
Collapse
Affiliation(s)
- Michael Mayer
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas Auslander
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mateen C Moghbel
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States.,Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Lee R, Seok JW. An Update on [ 18F]Fluoride PET Imaging for Atherosclerotic Disease. J Lipid Atheroscler 2020; 9:349-361. [PMID: 33024730 PMCID: PMC7521973 DOI: 10.12997/jla.2020.9.3.349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is the leading cause of life-threatening morbidity and mortality, as the rupture of atherosclerotic plaques leads to critical atherothrombotic events such as myocardial infarction and ischemic stroke, which are the 2 most common causes of death worldwide. Vascular calcification is a complicated pathological process involved in atherosclerosis, and microcalcifications are presumed to increase the likelihood of plaque rupture. Despite many efforts to develop novel non-invasive diagnostic modalities, diagnostic techniques are still limited, especially before symptomatic presentation. From this point of view, vulnerable plaques are a direct target of atherosclerosis imaging. Anatomic imaging modalities have the limitation of only visualizing macroscopic structural changes, which occurs in later stages of disease, while molecular imaging modalities are able to detect microscopic processes and microcalcifications, which occur early in the disease process. Na[18F]-fluoride positron emission tomography/computed tomography could allow the early detection of plaque instability, which is deemed to be a primary goal in the prevention of cardiac or brain ischemic events, by quantifying the microcalcifications within vulnerable plaques and evaluating the atherosclerotic disease burden.
Collapse
Affiliation(s)
- Reeree Lee
- Department of Nuclear Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Ju Won Seok
- Department of Nuclear Medicine, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
18
|
Zhang V, Koa B, Borja AJ, Padmanhabhan S, Bhattaru A, Raynor WY, Rojulpote C, Seraj SM, Werner TJ, Rajapakse C, Alavi A, Revheim ME. Diagnosis and Monitoring of Osteoporosis with Total-Body 18F-Sodium Fluoride-PET/CT. PET Clin 2020; 15:487-496. [PMID: 32768370 DOI: 10.1016/j.cpet.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, 18F-Sodium Fluoride (NaF)-PET/CT has seen its role in the detection and management of osteoporosis increase. This article reviews the extent of this application in the literature, its efficacy compared with other comparable imaging tools, and how total-body PET/CT combined with global disease assessment can revolutionize measurement of total osteoporotic disease activity. NaF-PET/CT eventually can be the modality of choice for metabolic bone disorders, especially with these advances in technology and computation.
Collapse
Affiliation(s)
- Vincent Zhang
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Koa
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Drexel University College of Medicine, Philadelphia, PA, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sayuri Padmanhabhan
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abhijit Bhattaru
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chaitanya Rojulpote
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | | | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Chamith Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Høilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging 2019; 47:1538-1551. [PMID: 31773235 PMCID: PMC7188711 DOI: 10.1007/s00259-019-04603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Purpose We examined the literature to elucidate the role of 18F-sodium fluoride (NaF)-PET in atherosclerosis. Methods Following a systematic search of PubMed/MEDLINE, Embase, and Cochrane Library included articles underwent subjective quality assessment with categories low, medium, and high. Of 2811 records, 1780 remained after removal of duplicates. Screening by title and abstract left 41 potentially eligible full-text articles, of which 8 (about the aortic valve (n = 1), PET/MRI feasibility (n = 1), aortic aneurysms (n = 1), or quantification methodology (n = 5)) were dismissed, leaving 33 published 2010–2012 (n = 6), 2013–2015 (n = 11), and 2016–2018 (n = 16) for analysis. Results They focused on coronary (n = 8), carotid (n = 7), and femoral arteries (n = 1), thoracic aorta (n = 1), and infrarenal aorta (n = 1). The remaining 15 studies examined more than one arterial segment. The literature was heterogeneous: few studies were designed to investigate atherosclerosis, 13 were retrospective, 9 applied both FDG and NaF as tracers, 24 NaF only. Subjective quality was low in one, medium in 13, and high in 19 studies. The literature indicates that NaF is a very specific tracer that mimics active arterial wall microcalcification, which is positively associated with cardiovascular risk. Arterial NaF uptake often presents before CT-calcification, tends to decrease with increasing density of CT-calcification, and appears, rather than FDG-avid foci, to progress to CT-calcification. It is mainly surface localized, increases with age with a wide scatter but without an obvious sex difference. NaF-avid microcalcification can occur in fatty streaks, but the degree of progression to CT-calcification is unknown. It remains unknown whether medical therapy influences microcalcification. The literature held no therapeutic or randomized controlled trials. Conclusion The literature was heterogeneous and with few clear cut messages. NaF-PET is a new approach to detect and quantify microcalcification in early-stage atherosclerosis. NaF uptake correlates with cardiovascular risk factors and appears to be a good measure of the body’s atherosclerotic burden, potentially suited also for assessment of anti-atherosclerotic therapy. Electronic supplementary material The online version of this article (10.1007/s00259-019-04603-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark. .,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Michael Sturek
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Sorci O, Batzdorf AS, Mayer M, Rhodes S, Peng M, Jankelovits AR, Hornyak JN, Gerke O, Høilund-Carlsen PF, Alavi A, Rajapakse CS. 18F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and Framingham risk scoring when addressing whole-heart arterial calcification. Eur J Nucl Med Mol Imaging 2019; 47:1678-1687. [DOI: 10.1007/s00259-019-04590-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
|
21
|
Al-Zaghal A, Yellanki DP, Kothekar E, Werner TJ, Høilund-Carlsen PF, Alavi A. Sacroiliac Joint Asymmetry Regarding Inflammation and Bone Turnover: Assessment by FDG and NaF PET/CT. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2019; 7:108-114. [PMID: 31380449 PMCID: PMC6661309 DOI: 10.22038/aojnmb.2019.40820.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives This study was undertaken to determine the role of computed tomography (CT)-based methodology to segment the SI joint and quantify the metabolic activity using positron emission tomography (PET). We measured tracer uptake in the right and left SI joints independently to look for differences between the two sides. Further, we correlated tracer uptake with BMI and studied the inter-observer variation with regard to estimated tracer uptake in the SI joints. Methods In this retrospective study, a total of 103 subjects (48 females, 55 males) from the CAMONA study database collected 2012-2016 at Odense University Hospital in Denmark were included. Mean age was 48±14.59 years, mean BMI was 26.68±4.31 kg/m2. The SI joints were segmented on fused PET/CT images using a 3D growing algorithm with adjustable upper and lower Hounsfield Units (HU) thresholds. The metabolic activities on the two sides were correlated with BMI. Results For FDG, we found a higher average SUVmean on the right side (right: 1.3±0.33, left: 1.13±0.30; <0.0001). Similarly, for NaF, the uptake was higher on the right side (right: 5.9±1.29, left: 4.27±1.23; <0.0001). Positive correlations were present between BMI and FDG uptake (P<0.01) as well as NaF uptake (P<0.01). Conclusion The PET-based molecular imaging probes along with the CT-based segmentation techniques revealed a significant difference in the metabolic activity between the two SI joints with higher inflammation and reactive bone formation on the right side. FDG and NaF uptakes correlated significantly and positively with BMI.
Collapse
Affiliation(s)
- Abdullah Al-Zaghal
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA
| | - Dani P Yellanki
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA
| | - Esha Kothekar
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, PA, USA
| |
Collapse
|
22
|
|
23
|
New Molecular Imaging Strategies to Detect Inflammation in the Vulnerable Plaque. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Moghbel M, Al-Zaghal A, Werner TJ, Constantinescu CM, Høilund-Carlsen PF, Alavi A. The Role of PET in Evaluating Atherosclerosis: A Critical Review. Semin Nucl Med 2018; 48:488-497. [DOI: 10.1053/j.semnuclmed.2018.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Alavi A, Høilund-Carlsen PF. Letter from the Guest Editors. Semin Nucl Med 2018; 48:485-487. [PMID: 30322474 DOI: 10.1053/j.semnuclmed.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104.
| | | |
Collapse
|
26
|
Reilly CC, Raynor WY, Hong AL, Kargilis DC, Lee JS, Alecxih AG, Gupta N, Lim MK, Al-Zaghal A, Werner TJ, Rhodes SS, Alavi A, Rajapakse CS. Diagnosis and Monitoring of Osteoporosis With 18F-Sodium Fluoride PET: An Unavoidable Path for the Foreseeable Future. Semin Nucl Med 2018; 48:535-540. [PMID: 30322479 DOI: 10.1053/j.semnuclmed.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of metabolic bone diseases particularly osteoporosis and its precursor, osteopenia, continue to grow as serious global health issues today. On a worldwide perspective, 200million people suffer from osteoporosis and in 2005, over 2million fracture incidents were estimated due to osteoporosis in the United States. Currently, osteoporosis and other metabolic bone diseases are evaluated primarily through dual energy X-ray absorptiometry, and rarely by bone biopsy with tetracycline labeling or Technetium-99m (99mTc) based bone scintigraphy. Deficiencies in these methods have prompted the use of more precise methods of assessment. This review highlights the use of 18F-sodium fluoride (NaF) with PET (NaF-PET), NaF-PET/CT, or NaF-PET/MRI in the evaluation of osteoporosis and osteopenia in the lumbar spine and hip. This imaging modality provides a molecular perspective with respect to the underlying metabolic alterations that lead to osseous disorders by measuring bone turnover through standardized uptake values. Its sensitivity and ability to examine the entire skeletal system make it a more superior imaging modality compared to standard structural imaging techniques. Further research is needed to determine its accuracy in reflecting the efficacy of therapeutic interventions in metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jae S Lee
- University of Pennsylvania, Philadelphia, PA
| | | | | | - Marie K Lim
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
27
|
Al-Zaghal A, Mehdizadeh Seraj S, Werner TJ, Gerke O, Høilund-Carlsen PF, Alavi A. Assessment of Physiological Intracranial Calcification in Healthy Adults Using 18F-NaF PET/CT. J Nucl Med 2018; 60:jnumed.118.213678. [PMID: 30002111 DOI: 10.2967/jnumed.118.213678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this research study was to determine the role of 18F-Sodium fluoride (NaF) PET/CT imaging in the assessment of physiologic molecular calcification in the intra-cranial structures. We also examined the association of NaF accumulation with age as well as Hounsfield unit (HU) in certain anatomical sites that are known to calcify with normal aging. Methods: A total of 78 healthy subjects from the Cardiovascular Molecular Calcification Assessed by 18F-NaF PET/CT (CAMONA) clinical trial (38 females and 40 males) were included in this retrospective study. The mean age was 45.28 ±14.15 years (21-75). Mean standardized uptake values (SUVmean) was used to measure NaF accumulation in the choroid plexus and epithalamus (pineal gland and habenula). Maximum HU was also measured for each ROI. Correlation analysis was conducted to assess the association between parameters. Results: Mean SUVmean was 0.42 ± 0.26 in the right choroid plexus, 0.39 ±25 in the left choroid plexus, and 0.23±0.08 in the epithalamus. Significant positive correlations were present between NaF uptake and age in the right choroid plexus (r=0.61, P < 0.0001), left choroid plexus (r=0.63, p<0.0001), and epithalamus (r=0.36, P = 0.001). NaF uptake significantly correlated with HU in the right choroid plexus (r=0.52, P < 0.0001), left choroid plexus (r=0.57, p<0.0001), and epithalamus (r=0.25, P = 0.03). Conclusion: NaF could be used in the assessment of physiological calcification in several intracranial structures. We report significant associations between NaF uptake and aging as well as HU in the calcified choroid plexus and epithalamus. Our findings further support the growing interest to utilize NaF for detecting extra-osseous, molecular calcification, and this powerful probe has potential applications in the evaluation of various age-related, neurodegenerative brain processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Abass Alavi
- Hospital of the University of Pennsylvania, United States
| |
Collapse
|
28
|
Andrews JPM, Fayad ZA, Dweck MR. New methods to image unstable atherosclerotic plaques. Atherosclerosis 2018; 272:118-128. [PMID: 29602139 PMCID: PMC6463488 DOI: 10.1016/j.atherosclerosis.2018.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
Atherosclerotic plaque rupture is the primary mechanism responsible for myocardial infarction and stroke, the top two killers worldwide. Despite being potentially fatal, the ubiquitous prevalence of atherosclerosis amongst the middle aged and elderly renders individual events relatively rare. This makes the accurate prediction of MI and stroke challenging. Advances in imaging techniques now allow detailed assessments of plaque morphology and disease activity. Both CT and MR can identify certain unstable plaque characteristics thought to be associated with an increased risk of rupture and events. PET imaging allows the activity of distinct pathological processes associated with atherosclerosis to be measured, differentiating patients with inactive and active disease states. Hybrid integration of PET with CT or MR now allows for an accurate assessment of not only plaque burden and morphology but plaque biology too. In this review, we discuss how these advanced imaging techniques hold promise in redefining our understanding of stable and unstable coronary artery disease beyond symptomatic status, and how they may refine patient risk-prediction and the rationing of expensive novel therapies.
Collapse
Affiliation(s)
- Jack P M Andrews
- Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|