1
|
Niazi SK. The United States Food and Drug Administration's Platform Technology Designation to Expedite the Development of Drugs. Pharmaceutics 2024; 16:918. [PMID: 39065616 PMCID: PMC11279857 DOI: 10.3390/pharmaceutics16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug development costs can be significantly reduced if proven "platform" technologies are allowed to be used without having to validate their use. The most recent US Food and Drug Administration (FDA) guideline brings more clarity, as well as a greater focus on the most complex technologies that can now be used for faster drug development. The FDA has highlights the use of lipid nanoparticles (LNPs) to package and deliver mRNA vaccines, gene therapy, and short (2-20 length) synthetic nucleotides (siRNA). Additionally, monoclonal antibody cell development is targeted. The FDA provides a systematic process of requesting platform status to benefit from its advantages. It brings advanced science and rationality into regulatory steps for the FDA's approval of drugs and biologicals.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Li C, Zhang P, Nie R, Gong X, Xie J, Yu Z, Wang C, Zhang H, Yan R, Lu Z. Targeting Amyloids with [ 18F]AV-45 for Medullary Thyroid Carcinoma Positron Emission Tomography/Computed Tomography Imaging: A Pilot Clinical Study. Mol Pharm 2022; 19:584-591. [PMID: 34982563 PMCID: PMC8826757 DOI: 10.1021/acs.molpharmaceut.1c00680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Medullary thyroid carcinoma (MTC) is a malignant neuroendocrine tumor with a high recurrence rate. Amyloid plaques formed from the misfolding of calcitonin are the key characteristics of MTC. Herein, we conducted a first-in-human pilot clinical study by applying a β-amyloid-specific radiotracer, [18F]AV-45, to positron emission tomography (PET)/computed tomography (CT) imaging of MTC. The presence of amyloid plaques in the tumor tissue sections from five MTC patients was confirmed by hematoxylin and eosin (H&E) and Congo Red staining. [18F]AV-45 selectively accumulated in the amyloid plaques in the continued tumor tissue sections with similar distribution patterns to the H&E and Congo Red staining. In addition, the [18F]AV-45 uptake can be largely blocked by its nonradioactive reference compound. The [18F]AV-45 accumulation in the thyroid, neck lymph nodes, and muscles in healthy human subjects is close to the background indicated by PET/CT imaging. In the comparison PET/CT imaging study of a recurrent MTC patient, 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) showed an elevated uptake by multiple neck lymph nodes. In contrast, only one of these neck lymph nodes had increased [18F]AV-45 uptake. Postoperative histopathological analysis confirmed the [18F]AV-45 PET-positive lymph node as MTC with amyloid deposition, while other [18F]FDG positive lymph nodes were free from MTC and amyloid plaques. Thus, [18F]AV-45 showed the promise for the clinical PET/CT imaging of MTC.
Collapse
Affiliation(s)
- Chun Li
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Pengxin Zhang
- Department
of Pathology, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Ruirui Nie
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Xiaoyan Gong
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Jinghui Xie
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Zilin Yu
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Chengdong Wang
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Hua Zhang
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China
| | - Ran Yan
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.,
| | - Zhi Lu
- Department
of Nuclear Medicine, First Affiliated Hospital
of Dalian Medical University, Liaoning 116021, People’s Republic of China,
| |
Collapse
|
3
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
4
|
Watanabe H, Kawano K, Shimizu Y, Iikuni S, Nakamoto Y, Togashi K, Ono M. Development of Novel PET Imaging Probes for Detection of Amylin Aggregates in the Pancreas. Mol Pharm 2020; 17:1293-1299. [PMID: 32202808 DOI: 10.1021/acs.molpharmaceut.9b01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The deposition of islet amyloid is associated with β-cell mass dysfunction in type 2 diabetes mellitus (T2DM). Since the amylin aggregate is the main component of islet amyloid, in vivo imaging of amylin may be useful for diagnosis and elucidation of the pathogenic mechanism of T2DM. In the present study, we newly designed, synthesized, and evaluated two 18F labeled compounds ([18F]DANIR-F 2b and [18F]DANIR-F 2c) as positron emission tomography (PET) probes targeting amylin aggregates. In an in vitro binding study, DANIR-F 2b and DANIR-F 2c showed binding affinity for amylin aggregates (Ki = 160 and 29 nM, respectively). In addition, [18F]DANIR-F 2b and [18F]DANIR-F 2c clearly labeled islet amyloids in in vitro autoradiography of T2DM pancreatic sections. In the biodistribution study using normal mice, [18F]DANIR-F 2b and [18F]DANIR-F 2c displayed favorable pharamacokinetics in the pancreas and some organs located near the pancreas. Furthermore, in an ex vivo autoradiographic study, [18F]DANIR-F 2c also bound to amylin aggregates in the pancreas of the amylin transplanted mice. The results of this study suggest that [18F]DANIR-F 2c shows fundamental properties as a PET imaging probe targeting amylin aggregates in the T2DM pancreas.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyoshiro Kawano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Ji B, Wang Q, Xue Q, Li W, Li X, Wu Y. The Dual Role of Kinin/Kinin Receptors System in Alzheimer's Disease. Front Mol Neurosci 2019; 12:234. [PMID: 31632239 PMCID: PMC6779775 DOI: 10.3389/fnmol.2019.00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive spatial disorientation, learning and memory deficits, responsible for 60%–80% of all dementias. However, the pathological mechanism of AD remains unknown. Numerous studies revealed that kinin/kinin receptors system (KKS) may be involved in the pathophysiology of AD. In this review article, we summarized the roles of KKS in neuroinflammation, cerebrovascular impairment, tau phosphorylation, and amyloid β (Aβ) generation in AD. Moreover, we provide new insights into the mechanistic link between KKS and AD, and highlight the KKS as a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Bingyuan Ji
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qingjie Xue
- Department of Pathogenic Biology, Jining Medical University, Jining, China
| | - Wenfu Li
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Liu X, Wang W, Chen HL, Zhang HY, Zhang NX. Interplay between Alzheimer's disease and global glucose metabolism revealed by the metabolic profile alterations of pancreatic tissue and serum in APP/PS1 transgenic mice. Acta Pharmacol Sin 2019; 40:1259-1268. [PMID: 31089202 DOI: 10.1038/s41401-019-0239-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence suggests that there is a correlation between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD). Increased Aβ polypeptide production in AD patients would promote metabolic abnormalities, insulin signaling dysfunction and perturbations in glucose utilization, thus leading to the onset of T2D. However, the metabolic mechanisms underlying the interplay between AD and its diabetes-promoting effects are not fully elucidated. Particularly, systematic metabolomics analysis has not been performed for the pancreas tissues of AD subjects, which play key roles in the glucose metabolism of living systems. In the current study, we characterized the dynamic metabolic profile alterations of the serum and the pancreas of APP/PS1 double-transgenic mice (an AD mouse model) using the untargeted metabolomics approaches. Serum and pancreatic tissues of APP/PS1 transgenic mice and wild-type mice were extracted and subjected to NMR analysis to evaluate the functional state of pancreas in the progress of AD. Multivariate analysis of principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to define the global and the local (pancreas) metabolic features associated with the possible initiation of T2D in the progress of AD. Our results showed the onset of AD-induced global glucose metabolism disorders in AD mice. Hyperglycemia and its accompanying metabolic disorders including energy metabolism down-regulation and oxidative stress were observed in the serum of AD mice. Meanwhile, global disturbance of branched-chain amino acid (BCAA) metabolism was detected, and the change of BCAA (leucine) was positively correlated to the alteration of glucose. Moreover, increased level of glucose and enhanced energy metabolism were observed in the pancreas of AD mice. The results suggest that the diabetes-promoting effects accompanying the progress of AD are achieved by down-regulating the global utilization of glucose and interfering with the metabolic function of pancreas. Since T2D is a risk factor for the pathogenesis of AD, our findings suggest that targeting the glucose metabolism dysfunctions might serve as a supplementary therapeutic strategy for Alzheimer's disease.
Collapse
|
7
|
Watanabe H, Yoshimura M, Sano K, Shimizu Y, Kaide S, Nakamoto Y, Togashi K, Ono M, Saji H. Characterization of Novel 18F-Labeled Phenoxymethylpyridine Derivatives as Amylin Imaging Probes. Mol Pharm 2018; 15:5574-5584. [PMID: 30407835 DOI: 10.1021/acs.molpharmaceut.8b00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deposition of islet amyloid consisting of amylin constitutes one of pathological hallmarks of type 2 diabetes mellitus (T2DM), and it may be involved in the development and progression of T2DM. However, the details about the relationship between the deposition of islet amyloid and the pathology of T2DM remain unclear, since no useful imaging tracer enabling the visualization of pancreatic amylin is available. In the present study, we synthesized and evaluated six novel 18F-labeled phenoxymethylpyridine (PMP) derivatives as amylin imaging probes. All 18F-labeled PMP derivatives showed not only affinity for islet amyloid in the post-mortem T2DM pancreatic sections but also excellent pharmacokinetics in normal mice. Furthermore, ex vivo autoradiographic studies demonstrated that [18F]FPMP-5 showed intense labeling of islet amyloids in the diabetes model mouse pancreas in vivo. The preclinical studies suggested that [18F]FPMP-5 may have potential as an imaging probe that targets amylin aggregates in the T2DM pancreas.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Kohei Sano
- Division of Clinical Radiology Service , Kyoto University Hospital , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Yoichi Shimizu
- Division of Clinical Radiology Service , Kyoto University Hospital , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine , Kyoto University , 54 Shogoin Kawahara-cho , Sakyo-ku, Kyoto 606-8507 , Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida Shimoadachi-cho , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|