1
|
Yang S, Duan H, Yan Z, Xue C, Niu T, Cheng W, Zhang Y, Zhao X, Hu J, Zhang L. Luteolin Alleviates Ulcerative Colitis in Mice by Modulating Gut Microbiota and Plasma Metabolism. Nutrients 2025; 17:203. [PMID: 39861331 PMCID: PMC11768085 DOI: 10.3390/nu17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC. Luteolin (Lut), originating from a variety of vegetables and fruits, has attracted attention for its potent anti-inflammatory properties and potential to modulate intestinal flora. METHODS The therapeutic efficacy of Lut was evaluated in an established dextran sodium sulfate (DSS)-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination and the evaluation of the epithelial barrier function, microbiome, and metabolomics. RESULTS The findings revealed that Lut administration at a dose of 25 mg/kg significantly ameliorated systemic UC symptoms in mice, effectively reduced the systemic inflammatory response, and significantly repaired colonic barrier function. Furthermore, Lut supplementation mitigated gut microbiota dysbiosis in a UC murine model, increasing the abundance of Muribaculaceae, Rikenella, and Prevotellaceae while decreasing Escherichia_Shigella and Bacteroides levels. These alterations in gut microbiota also influenced plasma metabolism, significantly increasing phosphatidylcholine (PC), 6'-Deamino- 6'-hydroxyneomycin C, and gamma-L-glutamyl-butyrosine B levels and decreasing Motapizone and Arachidoyl-Ethanolamide (AEA) levels. CONCLUSIONS This study reveals that Lut supplementation modulates intestinal inflammation by restoring the gut microbiota community structure, thereby altering the synthesis of inflammation-related metabolites. Lut is a potential nutritional supplement with anti-inflammatory properties and offers a novel alternative for UC intervention and mitigation. In addition, further studies are needed to ascertain whether specific microbial communities or metabolites can mediate the recovery from UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
2
|
Li J, Li Q, Ma W, Zhang Y, Li X. Expression of MAF bZIP transcription factor B protects against ulcerative colitis through the inhibition of the NF-κB pathway. Immun Inflamm Dis 2024; 12:e1372. [PMID: 39172054 PMCID: PMC11340633 DOI: 10.1002/iid3.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
PURPOSE The aim of this study was to explore whether MAF bZIP transcription factor B (MAFB) might alleviate ulcerative colitis (UC) in dextran sulfate sodium (DSS)-induced mice and LPS-induced IEC-6 cells. METHODS UC in vivo and in vitro model was established by using DSS and LPS, respectively. The mice body weight and disease activity index (DAI) score were recorded daily, and colon length was measured. Moreover, the permeability was evaluated utilizing a fluorescein isothiocyanate dextran (FITC-Dextran) probe. Histopathological changes of DSS-induced colitis mice was assessed utilizing H&E staining. Next, qRT-PCR was performed to detect IL-1β, IL-6, TNF-α, and IL-10 level in in vivo and in vitro. Furthermore, the level of MDA, SOD, CAT, and GSH were evaluated in colon tissues. Besides, the expressions of tight junction proteins and NF-κB pathway relative proteins were examined in colitis mice and IEC-6 cells using western blot, immunohistochemistry and immunofluorescence. RESULTS MAFB level was downregulated in DSS-induced colitis mice. Moreover, the upregulation of MAFB protected mice from DSS-induced colitis by suppressing DSS-induced inflammation, oxidative stress, and intestinal barrier impairment. We also demonstrated that the upregulation of MAFB inactivated NF-κB pathway in DSS-caused colitis mice. Subsequently, we observed that MAFB upregulation could inhibit LPS-caused epithelial barrier impairment and inflammation in IEC-6 cells. Additionally, MAFB overexpression could suppress the activation of NF-κB pathway in IEC-6 cells. CONCLUSION The upregulation of MAFB could protect against UC via the suppression of inflammation and the intestinal barrier impairment through inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Jingwen Li
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Qingmin Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of MedicineZhangqiu District Gaoguanzhai Community Health Service CenterJinanShandongChina
| | - Wei Ma
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongsheng Zhang
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiaonan Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
3
|
Jayallan B, Mustafa MH, Md Din N, Bastion MLC. Rhegmatogenous Retinal Detachment in Anterior Scleritis With Ulcerative Colitis. Cureus 2024; 16:e61819. [PMID: 38975419 PMCID: PMC11227292 DOI: 10.7759/cureus.61819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is an ocular emergency as it is sight-threatening and requires urgent surgical intervention. Ulcerative colitis (UC) is an immune-mediated inflammatory bowel disease that can present with ocular manifestations. The objective of this case report is to share the rare presentation of RRD associated with UC leading to diagnosis and management dilemmas. A 35-year-old man with active UC presented with a right chronic red eye for two months. The best corrected visual acuity (BCVA) was 6/6 in both eyes (OU). On examination, sectoral inferotemporal anterior scleritis (AS) with subclinical inferior RRD with peripheral holes in the lattice at the 6 o'clock position was noted. There was no posterior vitreous detachment. Optical coherence tomography (OCT) delineated the RRD objectively and was non-progressive for nine months. Barricade laser was given, in addition to intravenous methylprednisolone (IVMP), followed by a tapering dose of oral prednisolone and topical dexamethasone 0.1% over three months. Over a year, the scleritis resolved. However, six months later, while still on immunomodulating agents, the inferior RRD progressed on OCT. Segmental scleral buckle, indirect laser retinopexy, and subtenon triamcinolone injection were performed. IVMP 1 g per day was given for three days prior to surgery. Two months later, his BCVA was 6/6, with signs of fluid resorption and normal intraocular pressure. No recurrent AS was seen. Treatment of non-progressive, subclinical RRD patients with UC and active AS can be delayed with regular follow-up. When RRD progressed and there was no AS activity, it was the window of opportunity for the success of scleral buckle and perioperative steroids.
Collapse
Affiliation(s)
- Bannu Jayallan
- Department of Ophthalmology, Hospital Canselor Tuanku Muhriz Universiti Kebangsaan Malaysia, Kuala Lumpur, MYS
| | - Mohd Hasif Mustafa
- Department of Ophthalmology, Hospital Canselor Tuanku Muhriz Universiti Kebangsaan Malaysia, Kuala Lumpur, MYS
| | - Norshamsiah Md Din
- Department of Ophthalmology, Hospital Canselor Tuanku Muhriz Universiti Kebangsaan Malaysia, Kuala Lumpur, MYS
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Hospital Canselor Tuanku Muhriz Universiti Kebangsaan Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
4
|
Wen Z, Kang L, Fu H, Zhu S, Ye X, Yang X, Zhang S, Hu J, Li X, Chen L, Hu Y, Yang X. Oral delivery of porous starch-loaded bilayer microgels for controlled drug delivery and treatment of ulcerative colitis. Carbohydr Polym 2023; 314:120887. [PMID: 37173037 DOI: 10.1016/j.carbpol.2023.120887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
We prepared one type of bilayer microgels for oral administration with three effects: pH responsiveness, time lag, and colon enzyme degradation. Combined with the dual biological effects of curcumin (Cur) for reducing inflammation and promoting repair of colonic mucosal injury, targeted colonic localization and release of Cur according to the colonic microenvironment were enhanced. The inner core, derived from guar gum and low-methoxyl pectin, afforded colonic adhesion and degradation behavior; the outer layer, modified by alginate and chitosan via polyelectrolyte interaction, achieved colonic localization. The porous starch (PS)-mediated strong adsorption allowed Cur loading in inner core to achieve a multifunctional delivery system. In vitro, the formulations exhibited good bioresponses at different pH conditions, potentially delaying Cur release in the upper gastrointestinal tract. In vivo, dextran sulfate sodium-induced ulcerative colitis (UC) symptoms were significantly alleviated after oral administration, accompanied by reduced levels of inflammatory factors. The formulations facilitated colonic delivery, allowing Cur accumulation in colonic tissue. Moreover, the formulations could alter gut microbiota composition in mice. During Cur delivery, each formulation increased species richness, decreased pathogenic bacterial content, and afforded synergistic effects against UC. These PS-loaded bilayer microgels, exhibiting excellent biocompatibility, multi-bioresponsiveness, and colon targeting, could be beneficial in UC therapy, allowing development into a novel oral formulation.
Collapse
Affiliation(s)
- Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Lvyi Chen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
5
|
Wang W, Jia S, Miao G, Sun Z, Yu F, Gao Z, Li Y. Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4 / MyD88 / NF-κB pathway. BIOMATERIALS ADVANCES 2023; 152:213520. [PMID: 37336008 DOI: 10.1016/j.bioadv.2023.213520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent intestinal disease of unknown aetiology, and the few treatments approved for UC have serious side effects. In this study, a new type of uniformly monodispersed calcium-enhanced radial mesoporous micro-nano bioactive glass (HCa-MBG) was prepared for UC treatment. We established cellular and rat UC models to explore the effects and mechanism of HCa-MBG and traditional BGs (45S5, 58S) on UC. The results showed that BGs significantly reduced the cellular expression of several inflammatory factors, such as IL-1β, IL-6, TNF-α and NO. In the animal experiments, BGs were shown to repair the DSS-damaged colonic mucosa. Moreover, BGs downregulated the mRNA levels of the inflammatory factors IL-1β, IL-6, TNF-α and iNOS, which were stimulated by DSS. BGs were also found to manage the expression of key proteins in NF-kB signal pathway. However, HCa-MBG was more effective than traditional BGs in terms of improving UC clinical manifestations and reducing the expression of inflammatory factors in rats. This study confirmed for the first time that BGs can be used as an adjuvant drug in UC treatment, thereby preventing UC progression.
Collapse
Affiliation(s)
- Wenhao Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China
| | | | - Guohou Miao
- Department of laboratory, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou 510182, China
| | - Zhenmin Sun
- Weifang Medical University, Weifang 261042, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhixing Gao
- Weifang Medical University, Weifang 261042, China
| | - Yuli Li
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Weifang Medical University, Weifang 261042, China.
| |
Collapse
|
6
|
Cheng H, Zhang D, Wu J, Liu J, Tan Y, Feng W, Peng C. Atractylodes macrocephala Koidz. volatile oil relieves acute ulcerative colitis via regulating gut microbiota and gut microbiota metabolism. Front Immunol 2023; 14:1127785. [PMID: 37205093 PMCID: PMC10187138 DOI: 10.3389/fimmu.2023.1127785] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Atractylodes macrocephala Koidz. (AM) is a functional food with strong ant-colitis activity. AM volatile oil (AVO) is the main active ingredient of AM. However, no study has investigated the improvement effect of AVO on ulcerative colitis (UC) and the bioactivity mechanism also remains unknown. Here, we investigated whether AVO has ameliorative activity on acute colitis mice and its mechanism from the perspective of gut microbiota. Methods Acute UC was induced in C57BL/6 mice by dextran sulfate sodium and treated with the AVO. Body weight, colon length, colon tissue pathology, and so on were assessed. The gut microbiota composition was profiled using 16s rRNA sequencing and global metabolomic profiling of the feces was performed. The results showed that AVO can alleviate bloody diarrhea, colon damage, and colon inflammation in colitis mice. In addition, AVO decreased potentially harmful bacteria (Turicibacter, Parasutterella, and Erysipelatoclostridium) and enriched potentially beneficial bacteria (Enterorhabdus, Parvibacter, and Akkermansia). Metabolomics disclosed that AVO altered gut microbiota metabolism by regulating 56 gut microbiota metabolites involved in 102 KEGG pathways. Among these KEGG pathways, many metabolism pathways play an important role in maintaining intestine homeostasis, such as amino acid metabolism (especially tryptophan metabolism), bile acids metabolism, and retinol metabolism. Conclusion In conclusion, our study indicated that AVO can be expected as novel prebiotics to treat ulcerative colitis, and modulating the composition and metabolism of gut microbiota may be its pharmacological mechanism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Mishra RK, Ahmad A, Kumar A, Ali A, Kanika, Jori C, Tabrez S, Zughaibi TA, Almashjary MN, Raza SS, Khan R. Cortisone-loaded stearoyl ascorbic acid based nanostructured lipid carriers alleviate inflammatory changes in DSS-induced colitis. BIOMATERIALS ADVANCES 2023; 148:213383. [PMID: 36958119 DOI: 10.1016/j.bioadv.2023.213383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Ulcerative colitis is a chronic inflammatory disease which poorly affects the colon and spreads toward the rectum over time. Cortisone (CRT) is a corticosteroid clinically used for the management of inflammatory diseases like colitis and other inflammatory bowel diseases. Due to some physicochemical properties' cortisone has limited potency in clinics. To overcome drug-related problems, we successfully prepared lipid nanocarriers with generally regarded as safe (GRAS) materials approved by USFDA. The present study aimed to assess the therapeutic efficacy of CRT-loaded 6-o-stearoyl ascorbic acid (SAA) nanostructured lipid carriers (NLCs) against DSS-induced colitis mice. Formulation and characterizations of reported nanostructured lipid carrier were performed according to our previously optimized parameters. The average hydrodynamic diameter of NLCs was 182 nm as measured by DLS with 81.14 % encapsulation efficacy. TEM, AFM and SEM images analysis confirmed its spherical appearance. hTERT-BJ cells viability up to a dose of 500 μg/ml shows cytocompatible characteristics of blank NLCs. CRT-loaded NLCs treatment normalizes physically observed parameters such as disease activity index, weight variation etc. These NLCs were able to significantly reduce the severity of colitis in terms of colon histoarchitecture, regaining of the goblet cells, mucins secretions, inhibition of proinflammatory cytokines etc. Treatment with CRT-loaded NLCs effectively downregulated the overexpression of inflammatory enzymes like cyclooxygenase-2 (COX-2), Inducible nitric oxide synthase (iNOS) etc. The results of this study concluded that these CRT-encapsulated NLCs efficiently manage the disease severity induced by DSS.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Aneesh Ali
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Kanika
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Chandrashekhar Jori
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Majed N Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase - 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
8
|
Arabacı Tamer S, Akbulut S, Erdoğan Ö, Çevik Ö, Ercan F, Yeğen BÇ. Neuropeptide W Exhibits Preventive and Therapeutic Effects on Acetic Acid-Induced Colitis via Modulation of the Cyclooxygenase Enzyme System. Dig Dis Sci 2023; 68:2441-2453. [PMID: 36631709 DOI: 10.1007/s10620-022-07811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND The novel peptide neuropeptide W (NPW) was originally shown to function in the control of feeding behavior and energy homeostasis. The aim of this study was to elucidate the putative preventive and therapeutic effects of NPW on colitis-associated oxidative injury and the underlying mechanisms for its action. METHODS Sprague-Dawley rats in the acute colitis groups received NPW (0.5, 1 or 5 µg/kg/day) injections prior to induction of colitis with acetic acid, while the chronic colitis groups were treated after the induction of colitis. In both acute and chronic colitis (CC) groups, treatments were continued for 5 days and the rats were decapitated at the 24th hour of the last injections and colon tissues were collected for assessments. RESULTS NPW pretreatment given for 5 days before colitis induction, as well as treating rats with NPW during the 5-day course of CC, abolished colonic lipid peroxidation. NPW treatment prevented colitis-induced reduction in blood flow, diminished neutrophil infiltration, and pro-inflammatory cytokine responses. NPW pretreatment only at the higher dose reduced colonic edema and microscopic score and preserved colonic glutathione stores. Elevations in cyclooxygenase (COX) enzyme activity and COX-1 protein level during the acute phase of colitis as well as reduction in COX-2 were all reversed with NPW pretreatment. In contrast, NPW treatment was effective in reducing the elevated COX-2 concentration during the chronic phase. CONCLUSIONS NPW alleviates acetic acid-induced oxidative colonic injury in rats through the upregulation of colonic blood flow as well as the inhibition of COX-2 protein expression and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.,Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Selin Akbulut
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, Aydın Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, Maltepe, 34854, Istanbul, Turkey.
| |
Collapse
|
9
|
He J, Liu L, Liu X, Chen H, Liu K, Huang N, Wang Y. Epoxymicheliolide prevents dextran sulfate sodium-induced colitis in mice by inhibiting TAK1-NF-κB pathway and activating Keap1-NRF2 signaling in macrophages. Int Immunopharmacol 2022; 113:109404. [PMID: 36461599 DOI: 10.1016/j.intimp.2022.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Ulcerative colitis (UC) is an unspecific colorectal inflammation associated with macrophages overactivation. Therefore, macrophage-targeted treatment has been considered a promising strategy for UC therapy. Epoxymicheliolide (EMCL) is a compound from Aucklandia lappa Decne, a TCM for treating gastrointestinal inflammatory diseases. The purpose of this study is to investigate the therapeutic effect of EMCL on DSS-induced mice colitis through the anti-inflammatory activity on macrophages and its underlying mechanisms. We found that EMCL inhibited the release of NO and PGE2 by down-regulating the expression of iNOS and COX2, while suppressed the expression of IL-1β, IL-6, and TNF-α in LPS-stimulated RAW264.7 macrophages. EMCL also inhibited NO production in LPS-activated peritoneal macrophages and TNFα-stimulated RAW264.7 cells. Moreover, EMCL blocked the phosphorylation of TAK1, IKKα/β, and IκBα, as well as IκBα degradation, thereby inhibiting the NF-κB pro-inflammatory signaling. Furthermore, EMCL decreased the intracellular ROS, by activating the NRF2 antioxidant pathway. CETSA and molecular docking showed that EMCL might form a covalent bond with Cys174 of TAK1 or Cya151 of Keap1, which may contribute to EMCL-mediated actions. Additionally, a thiol donor β-mercaptoethanol obviously abolished EMCL-mediated actions in vitro, suggesting the crucial role of the α, γ-unsaturated lactone of EMCL on its anti-inflammatory effects. Furthermore, EMCL not only ameliorated symptoms of colitis and colon barrier injury, but also decreased the levels of pro-inflammatory cytokines, MPO, NO, and MDA in DSS-challenged mice. Thus, our study demonstrated that EMCL ameliorated UC by targeting NF-κB and Nrf2 pathways, indicating it may server as a promising drug candidate for UC therapy.
Collapse
Affiliation(s)
- Jinchen He
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China
| | - Xiaojun Liu
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei University for Nationalities, 445000 Enshi, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
10
|
Hao W, Chen Z, Wang L, Yuan Q, Gao C, Ma M, Liu C, Wang Y, Wang S. Classical prescription Huanglian Decoction relieves ulcerative colitis via maintaining intestinal barrier integrity and modulating gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154468. [PMID: 36209702 DOI: 10.1016/j.phymed.2022.154468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) has affected an increasing number of people globally, with still limited clinical success. Huanglian Decoction (HLD) is a famous classical prescription documented for alleviating gastrointestinal disorders with unexplored therapeutic effects and mechanisms. PURPOSE This study aimed to investigate the therapeutic effect and underlying mechanism of HLD in dextran sodium sulfate (DSS)-induced colitis mice. METHODS The efficacy and safety of HLD were evaluated in a well-established DSS-induced colitis mice model. Disease progression was monitored via clinical symptoms, histopathological examination, biochemical assays, and epithelial barrier function evaluation. RESULTS HLD alleviated DSS-induced colitis symptoms, reversed colon length reduction, reduced histological injury, downregulated the level of pro-inflammatory cytokines, maintained the tight distribution of ZO-1/occludin-1 and the normal level of β-catenin, concurrent with apoptosis reduction in the colonic epithelium. After HLD treatment, the DSS-induced gut dysbiosis was modulated, and the gut microbiota achieved a new equilibrium state. CONCLUSION This study demonstrates that HLD may present a potential remedy for UC treatment, providing evidence for further developing Chinese classical prescriptions.
Collapse
Affiliation(s)
- Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou 363000, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Meiling Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Congsheng Liu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou 363000, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
| |
Collapse
|
11
|
Chen K, Shang S, Yu S, Cui L, Li S, He N. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Front Immunol 2022; 13:998470. [PMID: 36311726 PMCID: PMC9606687 DOI: 10.3389/fimmu.2022.998470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). Its etiology is unclear. Much evidence suggests that the death of abnormal intestinal epithelial cells (IECs) leads to intestinal barrier disruption, and the subsequent inflammatory response plays a vital role in UC. Pyroptosis is a form of programmed inflammatory cell death, and the role of pyroptosis in UC etiology remains to be explored. This study identified 10 hub genes in pyroptosis by gene expression profiles obtained from the GSE87466 dataset. Meanwhile, the biomarkers were screened based on gene significance (GS) and module membership (MM) through the Weighted Gene Co-Expression Network Analysis (WGCNA). The following analysis indicated that hub genes were closely associated with the UC progression and therapeutic drug response. The single-cell RNA (scRNA) sequencing data from UC patients within the GSE162335 dataset indicated that macrophages were most related to pyroptosis. Finally, the expression of hub genes and response to the therapeutic drug [5-aminosalicylic acid (5-ASA)] were verified in dextran sulfate sodium (DSS)-induced colitis mice. Our study identified IL1B as the critical pyroptosis-related biomarker in UC. The crosstalk between macrophage pyroptosis and IEC pyroptosis may play an essential role in UC, deserving further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningning He
- *Correspondence: Shangyong Li, ; Ningning He,
| |
Collapse
|
12
|
Cheng H, Liu J, Zhang D, Wang J, Tan Y, Feng W, Peng C. Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Front Immunol 2022; 13:817600. [PMID: 35655785 PMCID: PMC9152015 DOI: 10.3389/fimmu.2022.817600] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disorder in the gastrointestinal tract. Here, we examined the pharmacological effects of ginsenoside Rg1, a natural compound with low bioavailability, on the acute experimental colitis mice induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Acute UC was induced in C57BL/6 mice by 2.5% DSS for 7 days, meanwhile, 2 mg/10 g b.w. ginsenoside Rg1 was administrated to treat the mice. Body weight, colon length, colon tissue pathology, and colon tissue inflammatory cytokines were assessed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. Global metabolomic profiling of the feces was performed, and tryptophan and its metabolites in the serum were detected. The results showed that Rg1 significantly ameliorated DSS-induced colonic injury and colonic inflammation. In addition, Rg1 also partly reversed the imbalance of gut microbiota composition caused by DSS. Rg1 intervention can regulate various metabolic pathways of gut microbiota such as valine, leucine, and isoleucine biosynthesis and vitamin B6 metabolism and the most prominent metabolic alteration was tryptophan metabolism. DSS decreased the levels of tryptophan metabolites in the serum, including indole-3-carboxaldehyde, indole-3-lactic acid, 3-indolepropionic acid, and niacinamide and Rg1 can increase the levels of these metabolites. In conclusion, the study discovered that Rg1 can protect the intestinal barrier and alleviate colon inflammation in UC mice, and the underlying mechanism is closely related to the regulation of gut microbiota composition and microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Fu YP, Yuan H, Xu Y, Liu RM, Luo Y, Xiao JH. Protective effects of Ligularia fischeri root extracts against ulcerative colitis in mice through activation of Bcl-2/Bax signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154006. [PMID: 35299029 DOI: 10.1016/j.phymed.2022.154006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by high levels of proinflammatory cytokines and epithelial barrier dysfunction. The root of Ligularia fischeri (Ledeb.) Turcz. is a traditional Chinese medicinal herb with diverse therapeutic properties, which has been successfully used to treat inflammation-related diseases. However, little is known about its effect and mechanism against UC. PURPOSE To investigate the efficacy and mechanism of L. fischeri root extracts against UC. METHODS L. fischeri root samples were prepared using the alcohol extraction method and liquid-liquid extraction method. A dextran sodium sulfate-induced UC mouse model and a lipopolysaccharide (LPS)-induced inflammatory cell model were employed in the present study. Cell apoptosis was detected by TUNEL staining, and an enzyme-linked immunosorbent assay was used to quantify the abundance of inflammatory factors in tissues. Hematoxylin and eosin staining and Masson staining were employed to analyze drug toxicity to the liver and kidney. A myeloperoxidase (MPO) assay kit was used to detect neutrophil infiltration in colon tissues. RT-qPCR was then employed to quantify the transcriptional levels of proinflammatory and apoptotic-related genes, while tight junction and apoptosis-related proteins were quantified via western blotting. Gas Chromatography/Mass Spectrometry analysis was then performed to identify the natural compounds in L. fischeri root extracts. RESULTS The water decoction extract, methanol extract, and especially the chloroform extract (CE) exerted potent therapeutic effects in UC mice. Similar to the positive control group (5-aminosalicylic acid), oral administration of CE (30, 60, and 90 mg/kg/d) elicited distinct therapeutic effects on UC mice in the medium- and high-dose groups. CE decreased disease activity index, histopathological score, and MPO level significantly, and effectively retained the colon length. Furthermore, CE significantly reduced the levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and enhanced the expression of tight junction proteins, such as zonula occludens (ZO)-1, ZO-2, claudin-1, and occludin, as well as the transcriptional levels of mucins, such as MUC-1 and MUC-2, in UC mice. Notably, CE prevented apoptosis of colonic epithelial cells by up-regulating Bcl-2 and down-regulating Bax. Also, CE inhibited the secretion of pro-inflammatory cytokines and apoptosis in LPS-induced RAW264.7 macrophages via the activation of Bcl-2/Bax signals. CONCLUSIONS Collectively, L. fischeri root extracts, especially CE, have obvious therapeutic effects against UC. CE reduces inflammation and protects the intestinal epithelial cells and intestinal epithelial barrier via activation of the Bcl-2/Bax signaling pathway, and may be a promising therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Yong-Ping Fu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Huan Yuan
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China; Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, PR China.
| |
Collapse
|
14
|
Zhao J, Zhang B, Mao Q, Ping K, Zhang P, Lin F, Liu D, Feng Y, Sun M, Zhang Y, Li QH, Zhang T, Mou Y, Wang S. Discovery of a Colon-Targeted Azo Prodrug of Tofacitinib through the Establishment of Colon-Specific Delivery Systems Constructed by 5-ASA-PABA-MAC and 5-ASA-PABA-Diamine for the Treatment of Ulcerative Colitis. J Med Chem 2022; 65:4926-4948. [PMID: 35275619 DOI: 10.1021/acs.jmedchem.1c02166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To mitigate the systemic adverse effects of tofacitinib, 5-ASA-PABA-MAC and 5-ASA-PABA-diamine colon-specific delivery systems were constructed, and tofacitinib azo prodrugs 9 and 20a-20g were synthesized accordingly. The release studies suggested that these systems could effectively release tofacitinib in vitro, and the 5-ASA-PABA-diamine system could successfully realize the colon targeting of tofacitinib in vivo. Specifically, compound 20g displayed a 3.67-fold decrease of plasma AUC(tofacitinib, 0-∞) and a 9.61-fold increase of colonic AUC(tofacitinib, 0-12h), compared with tofacitinib at a molar equivalent oral dose. Moreover, mouse models suggested that compound 20g (1.5 mg/kg) could achieve roughly the same efficacy against ulcerative colitis compared with tofacitinib (10 mg/kg) and did not impair natural killer cells. These results demonstrated the feasibility of compound 20g as an effective alternative to mitigate the systemic adverse effects of tofacitinib, and 5-ASA-PABA-MAC and 5-ASA-PABA-diamine systems were proven to be effective for colon-specific drug delivery.
Collapse
Affiliation(s)
- Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., 41 Liutang Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qiu Hua Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Tingjian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
15
|
Lin Y, Wu Y, Su J, Wang M, Wu X, Su Z, Yi X, Wei L, Cai J, Sun Z. Therapeutic role of d-pinitol on experimental colitis via activating Nrf2/ARE and PPAR-γ/NF-κB signaling pathways. Food Funct 2021; 12:2554-2568. [PMID: 33625409 DOI: 10.1039/d0fo03139a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis is a recrudescent intestinal inflammation coupled with diarrhea, weight loss, pus, and blood stool, which seriously impacts the quality of patient life. d-Pinitol, which can be a food supplement isolated from the food plant-like soybeans, Ceratonia siliqua Linn and Bruguiera gymnorrhiza, has been proved to show anti-oxidative and anti-inflammatory effects. However, the potential mechanism of d-pinitol still remains ill-defined contemporarily. In the current study, the therapeutic effect and potential mechanisms of d-pinitol against colitis were investigated. Oxidative stress and inflammation of experimental colitis were caused by 3% DSS treatment once daily for 7 days. During DSS treatment, the mice of the positive drug group and three other groups were orally administered SASP or d-pinitol once daily. Clinical symptoms were analyzed, and macroscopic scores were calculated. The levels of oxidative and inflammatory cytokines were measured using assay kits and RT-PCR. Additionally, the protein expression of the Nrf2/ARE pathway and PPAR-γ was measured by Western blot. Results showed that d-pinitol enormously alleviated DSS-induced bodyweight loss, colon shortening, and histological injuries, achieving a therapeutic efficacy superior to SASP. Moreover, the oxidative stress and colonic inflammatory response were mitigated. d-pinitol not only significantly activated the Nrf2/ARE signaling pathway via facilitating the translocation of Nrf2 from sitoplazma to cytoblast, upregulating the protein expression levels of GCLC, GCLM, HO-1, and NQO1, but also improved the PPAR-γ level by binding to the active site of PPAR-γ, when suppressing NF-κB p65 and IκBα phosphorylation. In conclusion, d-pinitol exhibited a dramatic anti-colitis efficacy by activating the Nrf2/ARE pathway and PPAR-γ. Hence, d-pinitol may be a promising therapeutic drug against UC in the future.
Collapse
Affiliation(s)
- Yinsi Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kobayashi T, Udagawa E, Uda A, Hibi T, Hisamatsu T. Impact of immunomodulator use on treatment persistence in patients with ulcerative colitis: A claims database analysis. J Gastroenterol Hepatol 2020; 35:225-232. [PMID: 31397010 PMCID: PMC7027773 DOI: 10.1111/jgh.14825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM It is unclear how adding an anti-tumor necrosis factor alpha agent to immunomodulator (IM) treatment, as a step-up strategy, affects long-term outcomes in ulcerative colitis. This retrospective study investigated persistence associated with biologic anti-tumor necrosis factor alpha agents combined with IMs versus biologic monotherapy in patients with ulcerative colitis. METHODS This was a longitudinal cohort study of patients in the Japan Medical Data Center claims database who had been newly prescribed infliximab or adalimumab as induction (completed) and maintenance (2010-2016). Biologic persistence (i.e. no switch/discontinuation during maintenance) was compared among patients prescribed biologic monotherapy (Bio) and those prescribed a biologic combined with an IM, as step-up (Bio + prior IM) or simultaneously (Bio + IM). RESULTS Three hundred and sixty-nine eligible patients were analyzed (233, 78, and 58 in the Bio, Bio + prior IM, and Bio + IM subgroups, respectively). Multivariate analysis showed a lower probability of nonpersistence during maintenance for infliximab-treated patients in the Bio + prior IM versus Bio subgroup (hazard ratio: 0.53; 95% confidence interval: 0.29-0.99; P = 0.045). No such effect was seen in adalimumab-treated patients (P = 0.222) or in the overall population (P = 0.398). The probability of nonpersistence during maintenance in the Bio + IM subgroup was not significantly different from that in the Bio subgroup in either the biologic subpopulation or in the overall population. CONCLUSIONS Adding infliximab to an existing IM results in a lower probability of nonpersistence compared with infliximab monotherapy in ulcerative colitis patients. This effect is not seen in adalimumab-treated patients.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Advanced IBD Research and TreatmentKitasato University Kitasato Institute HospitalTokyoJapan
| | - Eri Udagawa
- Japan Medical AffairsTakeda Pharmaceutical Company LimitedTokyoJapan
| | - Akihito Uda
- Japan Medical AffairsTakeda Pharmaceutical Company LimitedTokyoJapan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and TreatmentKitasato University Kitasato Institute HospitalTokyoJapan
| | - Tadakazu Hisamatsu
- The Third Department of Internal MedicineKyorin University School of MedicineTokyoJapan
| |
Collapse
|
17
|
Abstract
BACKGROUND This study will aim to systematically explore the efficacy of resveratrol for the treatment of patients with ulcerative colitis (UC). METHODS We will search the electronic databases of MEDLINE, EMBASE, Cochrane Library, Web of Science, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure up to the September 1, 2019 for randomized controlled trials (RCTs) that report on UC who have undergone resveratrol compared with other interventions. All electronic databases will be searched without restrictions of language. Two authors will independently conduct study screen, data extraction, and risk of bias assessment. Any disagreements between 2 authors will be resolved with a third author by discussion or consultation if it is necessary. RevMan 5.3 software will be applied for statistical analysis. RESULTS Outcomes include clinical remission, improvement of clinical symptoms, maintenance of remission, relapse rate, endoscopic assessment, histological assessment, quality of life, and adverse events. CONCLUSION This study will provide most recent evidence of resveratrol for the treatment of patients with UC. PROSPERO REGISTRATION NUMBER PROSPERO CRD42019150849.
Collapse
Affiliation(s)
- Yan-hui Chen
- Department of General Surgery, The First People's Hospital of Xianyang
| | - Yi Xiang
- Department of Gastroenterology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
18
|
Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 2019; 569:428-432. [PMID: 31043740 DOI: 10.1038/s41586-019-1162-y] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
Abstract
Combined PD-1 and CTLA-4-targeted immunotherapy with nivolumab and ipilimumab is effective against melanoma, renal cell carcinoma and non-small-cell lung cancer1-3. However, this comes at the cost of frequent, serious immune-related adverse events, necessitating a reduction in the recommended dose of ipilimumab that is given to patients4. In mice, co-treatment with surrogate anti-PD-1 and anti-CTLA-4 monoclonal antibodies is effective in transplantable cancer models, but also exacerbates autoimmune colitis. Here we show that treating mice with clinically available TNF inhibitors concomitantly with combined CTLA-4 and PD-1 immunotherapy ameliorates colitis and, in addition, improves anti-tumour efficacy. Notably, TNF is upregulated in the intestine of patients suffering from colitis after dual ipilimumab and nivolumab treatment. We created a model in which Rag2-/-Il2rg-/- mice were adoptively transferred with human peripheral blood mononuclear cells, causing graft-versus-host disease that was further exacerbated by ipilimumab and nivolumab treatment. When human colon cancer cells were xenografted into these mice, prophylactic blockade of human TNF improved colitis and hepatitis in xenografted mice, and moreover, immunotherapeutic control of xenografted tumours was retained. Our results provide clinically feasible strategies to dissociate efficacy and toxicity in the use of combined immune checkpoint blockade for cancer immunotherapy.
Collapse
|
19
|
Khodir AE, Said E, Atif H, ElKashef HA, Salem HA. Targeting Nrf2/HO-1 signaling by crocin: Role in attenuation of AA-induced ulcerative colitis in rats. Biomed Pharmacother 2019; 110:389-399. [DOI: 10.1016/j.biopha.2018.11.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
20
|
Messal N, Fernandez N, Dayot S, Gratio V, Nicole P, Prochasson C, Chantret I, LeGuilloux G, Jarry A, Couvelard A, Tréton X, Voisin T, Ogier-Denis E, Couvineau A. Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3618-3628. [PMID: 30251681 DOI: 10.1016/j.bbadis.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023]
Abstract
Orexins (orexin-A and orexin-B) are hypothalamic peptides that are produced by the same precursor and are involved in sleep/wake control, which is mediated by two G protein-coupled receptor subtypes, OX1R and OX2R. Ulcerative colitis (UC) is an inflammatory bowel disease, (IBD) which is characterized by long-lasting inflammation and ulcers that affect the colon and rectum mucosa and is known to be a significant risk factor for colon cancer development. Based on our recent studies showing that OX1R is aberrantly expressed in colon cancer, we wondered whether orexin-A could play a role in UC. Immunohistochemistry studies revealed that OX1R is highly expressed in the affected colonic epithelium of most UC patients, but not in the non-affected colonic mucosa. Injection of exogenous orexin-A specifically improved the inflammatory symptoms in the two colitis murine models. Conversely, injection of inactive orexin-A analog, OxB7-28 or OX1R specific antagonist SB-408124 did not have anti-inflammatory effect. Moreover, treatment with orexin-A in DSS-colitis induced OX1R-/- knockout mice did not have any protective effect. The orexin-A anti-inflammatory effect was due to the decreased expression of pro-inflammatory cytokines in immune cells and specifically in T-cells isolated from colonic mucosa. Moreover, orexin-A inhibited canonical NFκB activation in an immune cell line and in intestinal epithelial cell line. These results suggest that orexin-A might represent a promising alternative to current UC therapies.
Collapse
Affiliation(s)
- N Messal
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - N Fernandez
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - S Dayot
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - V Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - P Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - C Prochasson
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - I Chantret
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Inflammatory and stress responses in chronic liver diseases", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - G LeGuilloux
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - A Jarry
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, 1 Rue Gaston Veil, 44035 Nantes, France
| | - A Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - X Tréton
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - T Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - E Ogier-Denis
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - A Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France.
| |
Collapse
|
21
|
Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death Dis 2018; 9:890. [PMID: 30166541 PMCID: PMC6117360 DOI: 10.1038/s41419-018-0814-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/13/2023]
Abstract
Alpinetin, a flavonoid compound extracted from the seeds of Alpinia katsumadai Hayata, has been demonstrated to exert massive biological properties. This study aimed to evaluate the effect of alpinetin on dextran sulfate sodium (DSS)-induced colitis, and elucidate the potential mechanisms. Alpinetin significantly alleviated colitis in mice, accompanied with restored Th17/Treg balance in colons. In vitro, alpinetin directly promoted Treg differentiation but exerted little effect on Th17 differentiation, and the action was in an aryl hydrocarbon receptor (AhR)-dependent manner. It acted as a potential AhR activator, evidenced by increased expression of CYP1A1, dissociation of AhR/HSP90 complexes, AhR nuclear translocation, XRE-driven luciferase reporter gene and DNA-binding activity of AhR/ARNT/XRE in T cells. Furthermore, alpinetin significantly promoted expression of miR-302 but not others, and restrained expression of DNMT-1 and methylation level of Foxp3 promoter region in CD4+ T cells and colons of colitis mice. However, the association of CREB and Foxp3 promoter region but not expression, nuclear translocation and DNA-binding activity of CREB was up-regulated by alpinetin in CD4+ T cells. The relationship of alpinetin-adjusted AhR activation, expressions of miR-302 and DNMT-1, association of CREB and Foxp3 promoter region, and Treg differentiation was confirmed by using CH223191, siAhR, miR-302 inhibitor and pcDNA3.1(+)-mDNMT-1. Finally, CH223191 abolished the amelioration of alpinetin on colitis, induction of Treg cells and regulation of miR-302/DNMT-1/CREB signals in colons of colitis mice. In conclusion, alpinetin ameliorated colitis in mice via activating AhR, regulating miR-302/DNMT-1/CREB signals, therefore promoting Treg differentiation.
Collapse
|
22
|
Garidisan: Improving the Quality of Ulcer Healing in Rats with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8721257. [PMID: 28928792 PMCID: PMC5591922 DOI: 10.1155/2017/8721257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022]
Abstract
Garidisan, commonly used in Mongolia to treat ulcerative colitis (UC), contains wild poppy and Artemisia frigida Willd. Clinical evidence shows that Garidisan can effectively treat UC and that recurrence is low. Thus, we evaluated the effects of Garidisan on ulcer healing quality and the regulation of immune balance in rats with experimental UC. UC was induced by immunization with TNBS and Garidisan significantly reduced DAI, CMDI, and HS. H&E staining, SEM, and VG staining showed that Garidisan repaired damaged intestinal mucosa and significantly reduced expression of ICAM-1 and CD105 in regenerated tissues of UC rats. Collagen fibers were significantly fewer as well after treatment. Garidisan elevated EGF, VEGF, bFGF, VEGFR2, and FGFR1 of UC rats, reduced CD3+CD4+/CD3+CD8+ T cell ratios, and increased CD4+Th1/CD4+Th2 cell ratios and IFN-r/IL-4 ratios in peripheral blood of UC rats. In conclusion, Garidisan promoted tissue maturation of regenerated tissues by regulating the immune balance and improved functional maturity of regenerated tissues by reducing collagen formation, promoting maturation of new blood vessels, and increasing expression of growth factors and their receptors.
Collapse
|
23
|
Shao J, Liu Z, Wang L, Song Z, Chang H, Han N, Yin J. Screening of the optimized prescription from Suqingwan in terms of its therapeutic effect on DSS-induced ulcerative colitis by its regulation of inflammatory and oxidative mediators. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:54-62. [PMID: 28284792 DOI: 10.1016/j.jep.2017.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suqingwan (SQW), a traditional Chinese medicine used for treating ulcerative colitis (UC), is composed of 13 kinds of Traditional Chinese medicines (TCMs). According to TCM theory, we investigated whether a simplified prescription composed of the herbs with some functions, would have similar effects to SQW and examined its potential treatment mechanism of action. MATERIALS AND METHODS We categorized the herbs in SQW into four groups according to their traditional functions and used an orthogonal experimental design to obtain nine separated prescriptions (SPs) of SQW. A dextran sulfate sodium (DSS)-induced UC mouse model was used to evaluate the anti-ulcer colitis effects of the nine SPs and the calculated prescription (CP) was obtained based on the orthogonal t values of the disease activity index (DAI) of the nine SPs. The effect of the CP and SP8 were verified in the DSS-induced UC model, and the DAI and histopathology of the UC mice were examined. Myeloperoxidase (MPO), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 and IL-10 of the mice in SP8 were investigated to explore the mechanism of action of the optimized prescription with regard to anti-inflammatory and anti-oxidation effects. RESULTS Among the 9 SPs, separate prescription 6, 7 and 8 (SP6, SP7 and SP8) and the SQW formulation all significantly reduced the DAI of the UC mice and, in particular, SP8 had an effect similar to SQW, which consists of Sanguisorba officinalis L., Rehmannia glutinosa Libosch. and four other herbal medicines. In a further investigation, SP8 was found to improve the ulcerative colitis in mice in terms of both clinical symptoms and histopathology. The mortality of mice in the SP8 group was 33.3%, better than CP based on the orthogonal t values (83.3%). SP8 could also reduce the levels of TNF-α, IL-1β, IL-6, MPO and MDA and increase the levels of IL-4 and IL-10 in colon tissue of UC mice in comparison with those of the model group (p<0.05). CONCLUSIONS An optimized prescription (SP8) from SQW was obtained based on an orthogonal experimental design, which involved 6 herbal medicines, with significantly fewer herbs than in the original prescription. SP8 displayed a similar anti-ulcerative colitis activity to SQW, and its in vivo mechanism of action is related to up-regulation of anti-inflammatory cytokines and down-regulation of pro-inflammatory and oxidative factors.
Collapse
Affiliation(s)
- Jingxuan Shao
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zehai Song
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Chang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
24
|
Dong K, Zhang H, Yan Y, Sun J, Dong Y, Wang K, Zhang L, Shi X, Xing J. Improvement of side-effects and treatment on the experimental colitis in mice of a resin microcapsule-loading hydrocortisone sodium succinate. Drug Dev Ind Pharm 2016; 43:448-457. [PMID: 27819157 DOI: 10.1080/03639045.2016.1258410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Extensive or long-time use of corticosteroids often causes many toxic side-effects. The ion exchange resins and the coating material, Eudragit, can be used in combination to form a new oral delivery system to deliver corticosteroids. OBJECTIVES The resin microcapsule (DRM) composed by Amberlite 717 and Eudragit S100 was used to target hydrocortisone (HC) to the colon in order to improve its treatment effect on ulcerative colitis (UC) and reduce its toxic side-effects. METHODS Hydrocortisone sodium succinate (HSS) was sequentially encapsulated in Amberlite 717 and Eudragit S100 to prepare the HSS-loaded resin microcapsule (HSS-DRM). The scanning electron microscopy (SEM) was employed to investigate the morphology and structure of HSS-DRM. The in vitro release and in vivo studies of pharmacokinetics and intestinal drug residues in rat were used to study the colon-targeting of HSS-DRM. The mouse induced by 2,4,6-trinitrobenzenesulfonic acid was used to study the treatment of HSS-DRM on experimental colitis. RESULTS SEM study showed good morphology and structure of HSS-DRM. In the in vitro release study, > 80% of HSS was released in the colon environment (pH 7.4). The in vivo studies showed good colon-targeting of HSS-DRM (Tmax = 0.97 h, Cmax = 118.28 µg/mL of HSS; Tmax = 2.16 h, Cmax = 64.47 µg/mL of HSS-DRM). Moreover, the HSS-DRM could reduce adverse reactions induced by HSS and had good therapeutic effects on the experimental colitis. CONCLUSIONS The resin microcapsule system has good colon-targeting and can be used in the development of colon-targeting preparations.
Collapse
Affiliation(s)
- Kai Dong
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Hefeng Zhang
- b Department of Pharmacy , The first Hospital of Yulin , Yulin , Shaanxi , China
| | - Yan Yan
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jinyao Sun
- c Department of Pharmacy , The first Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Yalin Dong
- c Department of Pharmacy , The first Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Ke Wang
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Lu Zhang
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Xianpeng Shi
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jianfeng Xing
- a Department of Pharmaceutics, School of Pharmacy , Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
25
|
Wang M, Liang C, Hu H, Zhou L, Xu B, Wang X, Han Y, Nie Y, Jia S, Liang J, Wu K. Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Sci Rep 2016; 6:30696. [PMID: 27488951 PMCID: PMC4973258 DOI: 10.1038/srep30696] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell transplantation showed promising results in IBD management. However, the therapeutic impacts of cell delivery route that is critical for clinical translation are currently poorly understood. Here, three different MSCs delivery routes: intraperitoneal (IP), intravenous (IV), and anal injection (AI) were compared on DSS-induced colitic mice model. The overall therapeutic factors, MSCs migration and targeting as well as local immunomodulatory cytokines and FoxP3+ cells infiltration were analyzed. Colitis showed varying degrees of alleviation after three ways of MSCs transplantation, and the IP injection showed the highest survival rate of 87.5% and displayed the less weight loss and quick weight gain. The fecal occult blood test on the day 3 also showed nearly complete absence of occult blood in IP group. The fluorescence imaging disclosed higher intensity of engrafted cells in inflamed colon and the corresponding mesentery lymph nodes (MLNs) in IP and AI groups than the IV group. Real time-PCR and ELISA also demonstrate lower TNF-α and higher IL-10, TSG-6 levels in IP group. The immunohistochemistry indicated higher repair proliferation (Ki-67) and more FoxP3+ cells accumulation of IP group. IP showed better colitis recovery and might be the optimum MSCs delivery route for the treatment of DSS-induced colitis.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Gastroenterology, Xi'an Children's Hospital, 710006, China
| | - Cong Liang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Respiratory and Gastroenterology, Second People's Hospital, Xi'an, 710005, China
| | - Hao Hu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Gastroenterology, PLA No.5 Hospital, Yinchuan, 750004, China
| | - Lin Zhou
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuyun Jia
- Department of Gastroenterology, PLA No.5 Hospital, Yinchuan, 750004, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
26
|
Gao W, Guo Y, Wang C, Lin Y, Yu L, Sheng T, Wu Z, Gong Y. Indirubin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice through the inhibition of inflammation and the induction of Foxp3-expressing regulatory T cells. Acta Histochem 2016; 118:606-614. [PMID: 27396532 DOI: 10.1016/j.acthis.2016.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023]
Abstract
Indirubin, an active ingredient of a traditional Chinese medicine prescription named Danggui Longhui Wan, has been reported to exhibit abroad anti-cancer and anti-inflammation activities. However, the effect of indirubin on ulcerative colitis (UC) has not been addressed. Here, we investigated the therapeutic efficacy of indirubin on dextran sulfate sodium (DSS)-induced UC in mice and explored its underlying mechanisms. UC model was induced in BALB/c mice by administrating with 3% DSS in drinking water for 7days. Subsequently, indirubin treatment (10mg/kg) for 7days obviously inhibited the loss of body weight, reversed the elevation of disease activity index (DAI), alleviated crypt distortion and mucosal injury, and reduced inflammatory cell infiltration in the colon mucosa, thereby ameliorating DSS-induced UC. Mechanically, the levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-2 as well as myeloperoxidase (MPO) activity in colon tissues were decreased significantly, while the levels of IL-4 and IL-10 were increased remarkably by indirubin treatment. Moreover, indirubin administration effectively suppressed CD4(+) T cell infiltration in the colon of DSS-induced UC mice and promoted the generation of Foxp3-expressing regulatory T cells. Additionally, further studies showed that indirubin obviously inhibited DSS-induced activation of nuclear factor (NF)-κB signaling. These results reveal that the significant anti-UC effect of indirubin may be attributable to its inhibition of inflammatory responses and promotion of Foxp3(+) T cells. Our studies provide the first evidence for the anti-UC effect of indirubin as well as the related molecular mechanisms and suggest a promising candidate drug for UC therapy.
Collapse
|
27
|
Van Assche G, Peyrin-Biroulet L, Sturm A, Gisbert JP, Gaya DR, Bokemeyer B, Mantzaris GJ, Armuzzi A, Sebastian S, Lara N, Lynam M, Rojas-Farreras S, Fan T, Ding Q, Black CM, Kachroo S. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - Multicenter European cohort study. Dig Liver Dis 2016; 48:592-600. [PMID: 26935454 DOI: 10.1016/j.dld.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Treatment of ulcerative colitis (UC) is aimed at maintaining corticosteroid-free remission and improving quality of life (QoL). AIM Assess patients' perception of disease burden and unmet clinical needs in moderate/severe UC patients. METHODS Adults surgery-free conventionally treated patients with Mayo score ≥6 were enrolled in an observational, cross-sectional, retrospective study in 11 European countries. Disease control was defined as Mayo score ≤2 with no sub-score >1. No corticosteroid was used the previous two months. Unmet clinical needs were defined as: non-controlled disease, self-perception of 'moderate'/'severe' disease, and dissatisfaction with treatments. Disease burden on QoL and work productivity were assessed (EuroQol-5D-5L, Short Inflammatory Bowel Disease Questionnaire (SIBDQ) and Work Productivity and Activity Impairment (WPAI) in UC questionnaire). RESULTS UC patients (n=253) with mean Mayo score at enrolment of 4.9, 44.3% of patients had Mayo score ≥6. Main treatment was 5-ASA (75%). Overall, 25% met the composite endpoint for unmet clinical needs. Mean (SD) questionnaire scores were: EQ-5D-5L-VAS, 71 (19.1), EQ-5D-5L utility, 0.77 (0.19), SIBDQ, 4.8 (1.3), and WPAI, 26% (32%). CONCLUSIONS Patients with moderate/severe UC in the last 12 months treated with conventional therapies felt that their disease was not controlled and 25% reported unmet clinical needs. QoL and work productivity were seriously impaired.
Collapse
Affiliation(s)
- Gert Van Assche
- Division of Gastroenterology, University Hospitals Leuven, Leuven, Belgium.
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and Inserm U954, University Hospital of Nancy, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Andreas Sturm
- Department of Gastroenterology, DRK Kliniken Berlin I Westend, Berlin, Germany
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) and Centro de Investigación Biomédica and Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Daniel R Gaya
- Gastroenterology Unit, Glasgow Royal Infirmary, Glasgow, UK
| | | | | | - Alessandro Armuzzi
- IBD Unit, Complesso Integrato Columbus, Catholic University, Rome, Italy
| | - Shaji Sebastian
- Gastroenterology and IBD Unit, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
| | - Nuria Lara
- IMS Health, Real World Evidence Solutions, Barcelona, Spain
| | - Mark Lynam
- IMS Health, Real World Evidence Solutions, Barcelona, Spain
| | | | - Tao Fan
- Merck & Co., Inc., Rahway, NJ, United States
| | - Qian Ding
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | |
Collapse
|
28
|
Abstract
Inflammatory bowel disease (IBD) has been increasingly diagnosed in children and adults. Similarly, acute and chronic pancreatitis are increasingly prevalent conditions with potentially devastating consequences. There is a growing body of literature linking these 2 conditions. The purpose of this review is to provide a comprehensive outline of the association between IBD and pancreatitis and to explore their putative pathophysiology. Based on the collective reports, 2 outstanding reasons for pancreatitis in patients with IBD are medications and IBD complications.
Collapse
|
29
|
Dong K, Zeng A, Wang M, Dong Y, Wang K, Guo C, Yan Y, Zhang L, Shi X, Xing J. In vitro and in vivo study of a colon-targeting resin microcapsule loading a novel prodrug, 3,4,5-tributyryl shikimic acid. RSC Adv 2016. [DOI: 10.1039/c5ra16971b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prodrugs synthesized by different drugs not only overcome the defects of the original drugs, but also significantly enhance their treatment effects.
Collapse
Affiliation(s)
- Kai Dong
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Aiguo Zeng
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Maoling Wang
- Qilu Hospital of Shandong University
- Qingdao
- China
| | - Yalin Dong
- Department of Pharmacy
- The First Affiliated Hospital of Medical College
- Xi'an Jiaotong University
- Xi'an
- China
| | - Ke Wang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Chenning Guo
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Yan Yan
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Lu Zhang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xianpeng Shi
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Jianfeng Xing
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| |
Collapse
|
30
|
Fornaro R, Caratto M, Barbruni G, Fornaro F, Salerno A, Giovinazzo D, Sticchi C, Caratto E. Surgical and medical treatment in patients with acute severe ulcerative colitis. J Dig Dis 2015; 16:558-67. [PMID: 26315728 DOI: 10.1111/1751-2980.12278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/05/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the mucosa of the colorectum. The treatment of UC depends on the severity of symptoms and the extent of the disease. Acute severe colitis (ASC) occurs in 12-25% of patients with UC. Patients with ASC must be managed by a multidisciplinary team. Medically or surgically aggressive treatment is carried out with the final aim of reducing mortality. Intravenous administration of corticosteroids is the mainstay of the therapy. Medical rescue therapy based on cyclosporine or infliximab should be considered if there is no response to corticosteroids for 3 days. If there has been no response to medical rescue therapy after 4-7 days, the patient must undergo colectomy in emergency surgery. Prolonged observation is counterproductive, as over time it increases the risk of toxic megacolon and perforation, with a very high mortality rate. The best potential treatment is subtotal colectomy with ileostomy and preservation of the rectum. Emergency surgery in UC should not be seen as a last chance, but can be considered as a life-saving procedure. Colectomies in emergency setting are characterized by high morbidity rates but the mortality is low.
Collapse
Affiliation(s)
- Rosario Fornaro
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | - Michela Caratto
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | - Ginevra Barbruni
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | - Francesco Fornaro
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | - Alexander Salerno
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | - Davide Giovinazzo
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| | | | - Elisa Caratto
- University of Genoa, Department of Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale per la Ricerca sul Cancro, Italy
| |
Collapse
|
31
|
Lv Q, Qiao SM, Xia Y, Shi C, Xia YF, Chou GX, Wang ZT, Dai Y, Wei ZF. Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T cells in colons. Int Immunopharmacol 2015; 29:787-797. [PMID: 26363976 DOI: 10.1016/j.intimp.2015.08.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Norisoboldine (NOR), the main active constituent of Radix Linderae, was previously demonstrated to ameliorate collagen-induced arthritis in rats through regulating the imbalance of T cells in intestines, which implied its therapeutic potential in inflammatory bowel disease. Here, we investigated the effect of NOR on ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in mice. Results showed that NOR (20, 40mg/kg) markedly reduced the symptoms of colitis, the levels of IL-1β and TNF-α, and the activation of ERK, p38 MAPK and NF-κB-p65. NOR only slightly decreased the levels of IFN-γ and IL-17A in mouse colons, but it dramatically increased the level of IL-10 at both protein and mRNA grades. Consistently, NOR increased the number of CD4(+)CD25(+)Foxp3(+) Treg cells more obviously than it decreased that of CD4(+)IL-17(+) Th17 cells in mesenteric lymph nodes (MLNs) and colonic lamina proprias (LPs) of colitis mice, and promoted the expression of Foxp3 mRNA in colon tissues. It could facilitate the in vitro differentiation of Treg cells from naive T cells and promote the phosphorylations of Smad2/3 in colon tissues of colitis mice. On the other hand, NOR did not affect the expressions of homing receptors CCR9 and α4β7 in SPs, and homing ligands CCL25 and Madcam-1 in MLNs and colonic LPs, suggesting that the increase of Treg cells in colons by NOR was not due to gut homing. In conclusion, NOR can ameliorate DSS-induced UC in mice, and the mechanisms involve reduction of pro-inflammatory cytokines and selective induction of Treg cells in colons.
Collapse
Affiliation(s)
- Qi Lv
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Si-Miao Qiao
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Xia
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Can Shi
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu-Feng Xia
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Dai
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhi-Feng Wei
- State Key Laboratory of Natural Medicine, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
32
|
Bürger M, Schmidt C, Teich N, Stallmach A. Medical Therapy of Active Ulcerative Colitis. VISZERALMEDIZIN 2015; 31:236-45. [PMID: 26557831 PMCID: PMC4608602 DOI: 10.1159/000436959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Medical therapy of mild and moderate ulcerative colitis (UC) of any extent is evidence-based and standardized by national and international guidelines. However, patients with steroid-refractory UC still represent a challenge. Methods A literature search using PubMed (search terms: ulcerative colitis, therapy, new, 1-2008-2015) resulted in 821 publications. For the current article, 88 citations were extracted including 36 randomized controlled studies, 18 reviews, and 8 meta-analyses. Results In steroid-refractory UC, early intensive therapy using anti-tumor necrosis factor (TNF) antibodies or the calcineurin inhibitors cyclosporine and tacrolimus is indicated in any case to prevent progression to a toxic megacolon and/or to avoid proctocolectomy. In patients with chronic disease activity, treatment with anti-TNF antibodies has a higher level of evidence than azathioprine therapy and should therefore be preferred. However, there is a subgroup of UC patients who may achieve prolonged steroid-free remission on azathioprine monotherapy. The importance of vedolizumab, a newly registered inhibiting antibody against integrin, has not yet been fully clarified since direct comparison studies are lacking, in particular in relation to anti-TNF antibodies. Conclusion There is a great need for additional innovative therapies, especially in cases of primary non-response or secondary loss of response to anti-TNF antibodies. New small molecules (Janus kinase inhibitors) are promising with an acceptable safety profile and efficacy in UC. Further, strategies that target the intestinal microbiome are currently considered for patients with active or relapsing UC, and may in the future open up new therapeutic options.
Collapse
Affiliation(s)
- Martin Bürger
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Carsten Schmidt
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Niels Teich
- Group Practice for Digestive and Metabolic Diseases, Leipzig, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Zeng A, Dong K, Wang M, Sun J, Dong Y, Wang K, Guo C, Yan Y, Zhang L, Shi X, Xing J. Investigation of the colon-targeting, improvement on the side-effects and therapy on the experimental colitis in mouse of a resin microcapsule loading dexamethasone sodium phosphate. Drug Deliv 2015; 23:1992-2002. [PMID: 26006768 DOI: 10.3109/10717544.2015.1046569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CONTEXT Dexamethasone is the major drug in the treatment of ulcerative colitis (UC). However, the extensive or long-time use of dexamethasone causes many toxic side-effects. Ion exchange resins react with external-ions through their own functional groups and Eudragit S occurs degradation when pH > 7. These features make them suitable for oral delivery system. OBJECTIVE Resin microcapsule (DRM) composed by 717 anion exchange resin and Eudragit S100 was used to target dexamethasone to the colon to improve its treatment effect on UC and reduce its toxic side-effects. RESULTS Dexamethasone sodium phosphate (DXSP) was sequentially encapsulated in 717 anion-exchange resin and Eudragit S100 to prepare the DXSP-loaded resin microcapsule (DXSP-DRM). The in vitro release study and in vivo study of pharmacokinetics and the intestinal drug residues in rat demonstrated the good colon-targeting of DXSP-DRM. Moreover, the DXSP-DRM can reduce the toxic side-effects induced by DXSP and have good therapeutic effects on colitis mouse induced by 2,4,6-trinitrobenzenesulfonic acid. DISCUSSION Dexamethasone can be targeted to the colon by DRM, thereby enhancing its treatment effect and reducing its toxic side effects. CONCLUSION The resin microcapsule system has good colon-targeting and can be used in the development of colon-targeted preparations.
Collapse
Affiliation(s)
- Aiguo Zeng
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Kai Dong
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Maoling Wang
- b Qilu Hospital of Shandong University , Qingdao , Shandong , China , and
| | - Jinyao Sun
- c Department of Pharmacy , the First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Yalin Dong
- c Department of Pharmacy , the First Affiliated Hospital of Medical College, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Ke Wang
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Chenning Guo
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Yan Yan
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Lu Zhang
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Xianpeng Shi
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jianfeng Xing
- a School of Pharmacy, Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
34
|
Seo GS, Chae SC. Biological therapy for ulcerative colitis: An update. World J Gastroenterol 2014; 20:13234-13238. [PMID: 25309060 PMCID: PMC4188881 DOI: 10.3748/wjg.v20.i37.13234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Of the diverse biological agents used for patients with ulcerative colitis, the anti-tumor necrosis factor-α agents infliximab and adalimumab have been used in large-scale clinical trials and are currently widely used in the treatment of inflammatory bowel disease patients. Recent studies have indicated that golimumab, oral tofacitinib and vedolizumab reportedly achieved good clinical response and remission rates in ulcerative colitis patients. Thus, we believe that the detailed investigation of various studies on clinical trials may provide important information for the selection of appropriate biological agents, and therefore, we have extensively reviewed such trials in the present study.
Collapse
|
35
|
Zampeli E, Gizis M, Siakavellas SI, Bamias G. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis. World J Gastrointest Pathophysiol 2014; 5:293-303. [PMID: 25133030 PMCID: PMC4133527 DOI: 10.4291/wjgp.v5.i3.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is an immune-mediated, chronic inflammatory disease of the large intestine. Its course is characterized by flares of acute inflammation and periods of low-grade chronic inflammatory activity or remission. Monoclonal antibodies against tumor necrosis factor (anti-TNF) are part of the therapeutic armamentarium and are used in cases of moderate to severe UC that is refractory to conventional treatment with corticosteroids and/or immunosuppressants. Therapeutic response to these agents is not uniform and a large percentage of patients either fail to improve (primary non-response) or lose response after a period of improvement (secondary non-response/loss of response). In addition, the use of anti-TNF agents has been related to uncommon but potentially serious adverse effects that preclude their administration or lead to their discontinuation. Finally, use of these medications is associated with a considerable cost for the health system. The identification of parameters that may predict response to anti-TNF drugs in UC would help to better select for patients with a high probability to respond and minimize risk and costs for those who will not respond. Analysis of the major clinical trials and the accumulated experience with the use of anti-TNF drugs in UC has resulted to the report of such prognostic factors. Included are clinical and epidemiological characteristics, laboratory markers, endoscopic indicators and molecular (immunological/genetic) signatures. Such predictive parameters of long-term outcomes may either be present at the commencement of treatment or determined during the early period of therapy. Validation of these prognostic markers in large cohorts of patients with variable characteristics will facilitate their introduction into clinical practice and the best selection of UC patients who will benefit from anti-TNF therapy.
Collapse
|