1
|
Dimitrov G, Ryffel B, Togbe D, Quesniaux V. cGAS-STING DNA-sensing in inflammatory bowel diseases. Trends Mol Med 2024:S1471-4914(24)00269-7. [PMID: 39448330 DOI: 10.1016/j.molmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic, incurable pathologies with unknown causes, affecting millions of people. Pediatric-onset IBD, starting before the age of 18 years, are increasing, with more aggressive and extensive features than adult-onset IBD. These differences remain largely unexplained. Intestinal mucosal damage, cell death, DNA release from nuclear, mitochondrial, or microbiota sources, and DNA-sensing activating the cGAS-STING pathway may contribute to disease evolution. Increased colonic cGAS and STING are increasingly reported in experimental and human IBD. However, limited knowledge of the mechanisms involved hinders the development of new therapeutic options. Here, we discuss recent advances and unresolved questions regarding DNA release, DNA sensor activation, and the role and therapeutic potential of the cGAS-STING pathway in inflammatory colitis.
Collapse
Affiliation(s)
- Georges Dimitrov
- Pediatrics and pediatric surgery, University Hospital Center of Orleans, Orleans 45100, France; Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France; University of Orleans, Orleans, France.
| | - Valérie Quesniaux
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France.
| |
Collapse
|
2
|
Wu M, Li C, Zhou X, Wu Z, Feng J, Guo X, Fang R, Lian Q, Pan M, Lai X, Peng Y. Wogonin preconditioning of MSCs improved their therapeutic efficiency for colitis through promoting glycolysis. Inflammopharmacology 2024; 32:2575-2587. [PMID: 38753221 DOI: 10.1007/s10787-024-01491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/07/2024] [Indexed: 08/06/2024]
Abstract
Inflammatory bowel diseases (IBDs) are prevalent and debilitating diseases with limited clinical treatment strategies. Mesenchymal stem cell (MSCs) are pluripotent stem cells with self-renewal capability and multiple immunomodulatory effects, which make them a promising therapeutic approach for IBDs. Thus, optimization of MSCs regimes is crucial for their further clinical application. Wogonin, a flavonoid-like compound with extensive immunomodulatory and adjuvant effects, has been investigated as a potential pretreatment for MSCs in IBD treatment. In this study, we employed the DSS-induced acute colitis mouse model to compare the therapeutic effectiveness of MSCs in pretreated with or without wogonin and further explore the underlying mechanism. Compared to untreated MSCs, MSCwogonin (pretreated with wogonin) showed greater effectiveness in the treatment of colitis. Further experiments revealed that wogonin treatment activated the AKT signaling pathway, resulting in higher cellular glycolysis. Inhibition of AKT phosphorylation by perifosine not only decreased glycolysis but impaired the therapeutic efficiency of MSCwogonin. Consistent with these results, qPCR data indicated that wogonin treatment induced the expression of immunomodulatory molecules IL-10, IDO, and AGR1, which were reduced by perifosine. Together, our data demonstrated that wogonin preconditioning strategy further augmented the therapeutic efficacy of MSCs via promoting glycolysis, which should be a promising strategy for optimizing MSCs therapy in IBDs.
Collapse
Affiliation(s)
- Mengye Wu
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Cuiping Li
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong, China
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianqi Feng
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Xiaolu Guo
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Rui Fang
- Center for Stem Cells Translational Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Qinghai Lian
- Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ming Pan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaorong Lai
- Department of Tumor Internal Medicine, Guangdong General Hospital Welfare Branch, Guangdong Academy of Medical Sciences, Guangzhou, 518067, Guangdong, China
| | - Yanwen Peng
- The Biotherapy Center, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
3
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Apte A, Bardill JR, Canchis J, Skopp SM, Fauser T, Lyttle B, Vaughn AE, Seal S, Jackson DM, Liechty KW, Zgheib C. Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn's Colitis Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:894. [PMID: 38786849 PMCID: PMC11124096 DOI: 10.3390/nano14100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Inflammation and oxidative stress are implicated in the pathogenesis of Crohn's disease. Cerium oxide nanoparticle (CNP) conjugated to microRNA 146a (miR146a) (CNP-miR146a) is a novel compound with anti-inflammatory and antioxidative properties. We hypothesized that local administration of CNP-miR146a would improve colitis in a 2,4,6-Trinitrobenzenesulfonic acid (TNBS) mouse model for Crohn's disease by decreasing colonic inflammation. Balb/c mice were instilled with TNBS enemas to induce colitis. Two days later, the mice received cellulose gel enema, cellulose gel with CNP-miR146a enema, or no treatment. Control mice received initial enemas of 50% ethanol and PBS enemas on day two. The mice were monitored daily for weight loss and clinical disease activity. The mice were euthanized on days two or five to evaluate their miR146a expression, inflammation on histology, and colonic IL-6 and TNF gene expressions and protein concentrations. CNP-miR146a enema successfully increased colonic miR146a expression at 12 h following delivery. At the end of five days from TNBS instillation, the mice treated with CNP-miR146a demonstrated reduced weight loss, improved inflammation scores on histology, and reduced gene expressions and protein concentrations of IL-6 and TNF. The local delivery of CNP-miR146a in a TNBS mouse model of acute Crohn's colitis dramatically decreased inflammatory signaling, resulting in improved clinical disease.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - James R. Bardill
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
| | - Bailey Lyttle
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Alyssa E. Vaughn
- Department of Surgery, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; (J.R.B.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32827, USA
| | | | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, Tucson, AZ 85721, USA (K.W.L.)
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Mpakogiannis K, Fousekis FS, Christodoulou DK, Katsanos KH, Narula N. The current role of Tofacitinib in acute severe ulcerative colitis in adult patients: A systematic review. Dig Liver Dis 2023; 55:1311-1317. [PMID: 37316363 DOI: 10.1016/j.dld.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Despite rescue therapy, acute severe ulcerative colitis (ASUC) is associated with a high risk of colectomy, while treatment options remain limited. Tofacitinib, a rapidly acting Janus Kinase (JAK) inhibitor, is gaining ground as an effective alternative treatment option for the management of acute severe ulcerative colitis, which may prevent emergency colectomy. METHODS A systematic literature search of PubMed and Embase was undertaken for studies of adult patients with ASUC treated with tofacitinib. RESULTS In total, two observational studies, seven case series and five case reports incorporating 134 patients who received tofacitinib in ASUC were identified with a follow-up period ranging from 30 days to 14 months. Overall, the pooled colectomy rate was 23.9% (95% CI 16.6-31.2). The pooled 90-day and 6-month colectomy free rate were 79.9% (95% CI 73.1-86.7) and 71.6% (95% CI 64-79.2) respectively. The most frequent adverse event was C. Difficile infection. CONCLUSIONS Tofacitinib appears to be a promising option for the treatment of ASUC. Randomized clinical trials are required to further access the efficacy, safety and optimal dose of tofacitinib in cases of ASUC.
Collapse
Affiliation(s)
- Konstantinos Mpakogiannis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Fotios S Fousekis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios K Christodoulou
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos H Katsanos
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Zulqarnain F, Rhoads SF, Syed S. Machine and deep learning in inflammatory bowel disease. Curr Opin Gastroenterol 2023; 39:294-300. [PMID: 37144491 PMCID: PMC10256313 DOI: 10.1097/mog.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The Management of inflammatory bowel disease (IBD) has evolved with the introduction and widespread adoption of biologic agents; however, the advent of artificial intelligence technologies like machine learning and deep learning presents another watershed moment in IBD treatment. Interest in these methods in IBD research has increased over the past 10 years, and they offer a promising path to better clinical outcomes for IBD patients. RECENT FINDINGS Developing new tools to evaluate IBD and inform clinical management is challenging because of the expansive volume of data and requisite manual interpretation of data. Recently, machine and deep learning models have been used to streamline diagnosis and evaluation of IBD by automating review of data from several diagnostic modalities with high accuracy. These methods decrease the amount of time that clinicians spend manually reviewing data to formulate an assessment. SUMMARY Interest in machine and deep learning is increasing in medicine, and these methods are poised to revolutionize the way that we treat IBD. Here, we highlight the recent advances in using these technologies to evaluate IBD and discuss the ways that they can be leveraged to improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Zulqarnain
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
7
|
Liang X, Wen K, Chen Y, Fang G, Yang S, Li Q. Oral Administration of Therapeutic Enzyme Capsule for the Management of Inflammatory Bowel Disease. Int J Nanomedicine 2022; 17:4843-4860. [PMID: 36262191 PMCID: PMC9574266 DOI: 10.2147/ijn.s378073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Oral administration of proteins/peptides is challenging in clinical application due to their instability and susceptibility in the gastrointestinal tract. MATERIALS AND METHODS The in situ polymerization on the surface of enzymes was used to encapsulate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) in polymeric shells, and the reactive oxygen species (ROS) scavenging ability was monitored based on DCFH-DA probe using flow cytometry and confocal laser scanning microscopy. The mRNA expression level of pro-inflammatory factors was assessed by real-time qPCR, using lipopolysaccharide-induced RAW264.7 cells as a model. Finally, the enzyme capsules were orally administered for the treatment of inflammatory bowel disease using dextran sodium sulfate (DSS)-induced colitis mice as a model, based on the evaluation of the disease-associated index, ROS level and pro-inflammatory cytokines' expression. RESULTS The enzyme capsules could effectively scavenge the intracellular reactive oxygen species (ROS) through the cascade catalysis of SOD and CAT, and thus protect the cells from ROS-induced oxidative damage. Meanwhile, the enzyme capsules could inhibit the secretion of pro-inflammatory cytokines from macrophages, thereby achieving favorable anti-inflammation effect. Oral administration of enzyme capsules could facilitate the accumulation of enzymes in the inflamed colon tissues of DSS-induced colitis mice. Moreover, the oral delivery of enzyme capsules could effectively alleviate the symptoms associated with colitis, attributing to the excellent ROS scavenging ability and the inhibition of pro-inflammatory cytokines' level. CONCLUSION In summary, our findings provided a promising approach to construct enzyme-based nano-formulations with favorable therapeutic efficacy and biocompatibility, exhibiting great potential in the treatment of gastrointestinal diseases in an oral administration manner.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Guangxu Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shengcai Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China,Correspondence: Quanshun Li; Shengcai Yang, Tel/Fax +86-431-85155200, Email ;
| |
Collapse
|
8
|
Editorial: The future of inflammatory bowel disease management. Curr Opin Gastroenterol 2022; 38:319-320. [PMID: 35762690 DOI: 10.1097/mog.0000000000000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|