1
|
Schippel N, Wei J, Ma X, Kala M, Qiu S, Stoilov P, Sharma S. Erythropoietin-dependent Acquisition of CD71 hi CD105 hi Phenotype within CD235a - Early Erythroid Progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610192. [PMID: 39257831 PMCID: PMC11383684 DOI: 10.1101/2024.08.29.610192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The development of committed erythroid progenitors and their continued maturation into mature erythrocytes requires the cytokine erythropoietin (Epo). Here, we describe the immunophenotypic identification of a unique Epo-dependent colony-forming unit-erythroid (CFU-E) cell subtype that forms during early erythropoiesis (EE). This previously undescribed CFU-E subtype, termed late-CFU-E (lateC), lacks surface expression of the characteristic erythroid marker CD235a (glycophorin A) but has high levels of CD71 and CD105. LateCs could be prospectively detected in human bone marrow (BM) cells and, upon isolation and reculture, exhibited the potential to form CFU-E colonies in medium containing only Epo (no other cytokines) and continued differentiation along the erythroid trajectory. Analysis of ex vivo cultures of BM CD34 + cells showed that acquisition of the CD7 hi CD105 hi phenotype in lateCs is gradual and occurs through the formation of four EE cell subtypes. Of these, two are CD34 + burst-forming unit-erythroid (BFU-E) cells, distinguishable as CD7 lo CD105 lo early BFU-E and CD7 hi CD105 lo late BFU-E, and two are CD34 - CFU-Es, also distinguishable as CD71 lo CD105 lo early CFU-E and CD7 hi CD105 lo mid-CFU-E. The transition of these EE populations is accompanied by a rise in CD36 expression, such that all lateCs are CD36 + . Single cell RNA-sequencing analysis confirmed Epo-dependent formation of a CFU-E cluster that exhibits high coexpression of CD71, CD105, and CD36 transcripts. Gene set enrichment analysis revealed the involvement of genes specific to fatty acid and cholesterol metabolism in lateC formation. Overall, in addition to identifying a key Epo-dependent EE cell stage, this study provides a framework for investigation into mechanisms underlying other erythropoiesis-stimulating agents.
Collapse
|
2
|
Fraering J, Salnot V, Gautier EF, Ezinmegnon S, Argy N, Peoc'h K, Manceau H, Alao J, Guillonneau F, Migot-Nabias F, Bertin GI, Kamaliddin C. Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria. EMBO Mol Med 2024; 16:319-333. [PMID: 38297098 PMCID: PMC10897182 DOI: 10.1038/s44321-023-00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
Cerebral malaria (CM), the most lethal complication of Plasmodium falciparum severe malaria (SM), remains fatal for 15-25% of affected children despite the availability of treatment. P. falciparum infects and multiplies in erythrocytes, contributing to anemia, parasite sequestration, and inflammation. An unbiased proteomic assessment of infected erythrocytes and plasma samples from 24 Beninese children was performed to study the complex mechanisms underlying CM. A significant down-regulation of proteins from the ubiquitin-proteasome pathway and an up-regulation of the erythroid precursor marker transferrin receptor protein 1 (TFRC) were associated with infected erythrocytes from CM patients. At the plasma level, the samples clustered according to clinical presentation. Significantly, increased levels of the 20S proteasome components were associated with SM. Targeted quantification assays confirmed these findings on a larger cohort (n = 340). These findings suggest that parasites causing CM preferentially infect reticulocytes or erythroblasts and alter their maturation. Importantly, the host plasma proteome serves as a specific signature of SM and presents a remarkable opportunity for developing innovative diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Jeremy Fraering
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Virginie Salnot
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Emilie-Fleur Gautier
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Institut Imagine-INSERM U1163, Hôpital Necker, Université Paris Cité, F-75015, Paris, France
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Sem Ezinmegnon
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Nicolas Argy
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Laboratoire de parasitologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Katell Peoc'h
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Centre de Recherche sur l'Inflammation, UFR de Médecine Xavier Bichat, Université Paris Cité, INSERM UMR1149, Paris, France
| | - Hana Manceau
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Département de Biochimie, Hôpital Universitaire Beaujon, APHP, Clichy, France
| | - Jules Alao
- Service de Pédiatrie, Centre Hospitalier Universitaire de la Mère et de l'Enfant-Lagune de Cotonou, Cotonou, Benin
| | - François Guillonneau
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Unité OncoProtéomique, Institut de Cancérologie de l'Ouest, F-49055, Angers, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | | | - Gwladys I Bertin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
| | - Claire Kamaliddin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
- Cumming School of Medicine, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Li W, Acker JP. CD71 + RBCs: A potential immune mediator in transfusion. Transfus Apher Sci 2023:103721. [PMID: 37173208 DOI: 10.1016/j.transci.2023.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Donor - recipient sex - mismatched transfusion is associated with increased mortality. The mechanisms for this are not clear, but it may relate to transfusion-related immunomodulation. Recently, CD71+ erythroid cells (CECs), including reticulocytes (CD71+ RBCs) and erythroblasts, have been identified as potent immunoregulatory cells. The proportion of CD71+ RBCs in the peripheral blood is sufficient to play a potential immunomodulatory role. Differences in the quantity of CD71+ RBCs are dependent on blood donor sex. The total number of CD71+ RBCs in red cell concentrates is also affected by blood manufacturing methods, and storage duration. As a component of the total CECs, CD71+ RBCs can affect innate and adaptive immune cells. Phagocytosed CECs directly reduce TNF-α production from macrophages. CECs can also suppress the production of TNF-α production from antigen presenting cells. Moreover, CECs can suppress T cell proliferation thorough immune mediation and / or direct cell-to-cell interactions. Different in their biophysical features compared to mature RBCs, blood donor CD71+ RBCs may be preferential targets for the macrophages. This report summarizes the currently literature supporting an important role for CD71+ RBCs in adverse transfusion reactions including immune mediation and sepsis.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton.
| |
Collapse
|
4
|
Bell RD. Considerations When Developing Blood-Brain Barrier Crossing Drug Delivery Technology. Handb Exp Pharmacol 2021; 273:83-95. [PMID: 34463850 DOI: 10.1007/164_2021_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided. Next, a few examples and learnings from existing BBB-crossing modalities will be reviewed. Insight from "BBBomic" databases and thoughts on basic requirements for successful in vivo validation studies are discussed. Finally, an additional engineering barrier, namely manufacturing and product scalability, is highlighted as it relates to clinical translation and feasibility for developing BBB-crossing delivery technologies. A goal of this chapter is to provide an overview of the many barriers to the successful delivery of medicines into the brain. An emphasis will be placed on biotherapeutic and gene therapy applications for the treatment of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Robert D Bell
- Rare Disease Research Unit, Pfizer Worldwide Research, Development and Medicine, Cambridge, MA, USA.
| |
Collapse
|
5
|
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 2021; 28:1838-1850.e10. [PMID: 34343492 DOI: 10.1016/j.stem.2021.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.
Collapse
|
6
|
Aronova MA, Noh SJ, Zhang G, Byrnes C, Meier ER, Kim YC, Leapman RD. Use of dual-electron probes reveals the role of ferritin as an iron depot in ex vivo erythropoiesis. iScience 2021; 24:102901. [PMID: 34401678 PMCID: PMC8355919 DOI: 10.1016/j.isci.2021.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
In the finely regulated process of mammalian erythropoiesis, the path of the labile iron pool into mitochondria for heme production is not well understood. Existing models for erythropoiesis do not include a central role for the ubiquitous iron storage protein ferritin; one model proposes that incoming endosomal Fe3+ bound to transferrin enters the cytoplasm through an ion transporter after reduction to Fe2+ and is taken up into mitochondria through mitoferrin-1 transporter. Here, we apply a dual three-dimensional imaging and spectroscopic technique, based on scanned electron probes, to measure Fe3+ in ex vivo human hematopoietic stem cells. After seven days in culture, we observe cells displaying a highly specialized architecture with anchored clustering of mitochondria and massive accumulation of nanoparticles containing high iron concentrations localized to lysosomal storage depots, identified as ferritin. We hypothesize that lysosomal ferritin iron depots enable continued heme production after expulsion of most of the cellular machinery.
Collapse
Affiliation(s)
- Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Seung-Jae Noh
- Penta Medix Co., Ltd., Seongnam, Gyeonggi-do, Republic of Korea
| | - Guofeng Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Colleen Byrnes
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Young C Kim
- Computational Biophysics, Center for Materials Physics and Technology, US Naval Research Laboratory, Washington, DC, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Fouquet G, Thongsa-Ad U, Lefevre C, Rousseau A, Tanhuad N, Khongkla E, Saengsawang W, Anurathapan U, Hongeng S, Maciel TT, Hermine O, Bhukhai K. Iron-loaded transferrin potentiates erythropoietin effects on erythroblast proliferation and survival: a novel role through transferrin receptors. Exp Hematol 2021; 99:12-20.e3. [PMID: 34077792 DOI: 10.1016/j.exphem.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Red blood cell production, or erythropoiesis, is a proliferative process that requires tight regulation. Erythropoietin (Epo) is a glycoprotein cytokine that plays a major role in erythropoiesis by triggering erythroid progenitors/precursors of varying sensitivity. The concentration of Epo in bone marrow is hypothesized to be suboptimal, and the survival of erythroid cells has been suggested to depend on Epo sensitivity. However, the key factors that control Epo sensitivity remain unknown. Two types of transferrin receptors (TfRs), TfR1 and TfR2, are known to play a role in iron uptake in erythroid cells. Here, we hypothesized that TfRs may additionally modulate Epo sensitivity during erythropoiesis by modulating Epo receptor (EpoR) signaling. Using an Epo-sensitive UT-7 (UT7/Epo) erythroid cell and human erythroid progenitor cell models, we report that iron-loaded transferrin, that is, holo-transferrin (holo-Tf), synergizes with suboptimal Epo levels to improve erythroid cell survival, proliferation, and differentiation. This is accomplished via the major signaling pathways of erythropoiesis, which include signal transducer and activator of transcription 5 (STAT5), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide-3-kinase (PI3K)/AKT. Furthermore, we found that this cooperation is improved by, but does not require, the internalization of TfR1. Interestingly, we observed that loss of TfR2 stabilizes EpoR levels and abolishes the beneficial effects of holo-Tf. Overall, these data reveal novel signaling properties of TfRs, which involve the regulation of erythropoiesis through EpoR signaling.
Collapse
Affiliation(s)
- Guillemette Fouquet
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France
| | | | - Carine Lefevre
- Laboratory of Excellence GReX, Paris, France; INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alice Rousseau
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nopmullee Tanhuad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ekkaphot Khongkla
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thiago T Maciel
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France
| | - Olivier Hermine
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France; Service d'Hématologie clinique adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Kanit Bhukhai
- Institut Hospitalo-Universitaire (IHU) Imagine, Université Sorbonne Paris cité, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; INSERM U1163, Université Paris Descartes, Faculté de Médecine, Hôpital Necker, Paris, France; Laboratory of Excellence GReX, Paris, France; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Fibach E. The Redox Balance and Membrane Shedding in RBC Production, Maturation, and Senescence. Front Physiol 2021; 12:604738. [PMID: 33664673 PMCID: PMC7920951 DOI: 10.3389/fphys.2021.604738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Membrane shedding in the form of extracellular vesicles plays a key role in normal physiology and pathology. Partial disturbance of the membrane-cytoskeleton linkage and increased in the intracellular Ca content are considered to be mechanisms underlying the process, but it is questionable whether they constitute the primary initiating steps. Homeostasis of the redox system, which depends on the equilibrium between oxidants and antioxidants, is crucial for many cellular processes. Excess oxidative power results in oxidative stress, which affects many cellular components, including the membrane. Accumulating evidence suggests that oxidative stress indirectly affects membrane shedding most probably by affecting the membrane-cytoskeleton and the Ca content. In red blood cells (RBCs), changes in both the redox system and membrane shedding occur throughout their life-from birth-their production in the bone marrow, to death-aging in the peripheral blood and removal by macrophages in sites of the reticuloendothelial system. Both oxidative stress and membrane shedding are disturbed in diseases affecting the RBC, such as the hereditary and acquired hemolytic anemias (i.e., thalassemia, sickle cell anemia, and autoimmune hemolytic anemia). Herein, I review some data-based and hypothetical possibilities that await experimental confirmation regarding some aspects of the interaction between the redox system and membrane shedding and its role in the normal physiology and pathology of RBCs.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
9
|
Sun J, Yang J, Whitman K, Zhu C, Cribbs DH, Boado RJ, Pardridge WM, Sumbria RK. Hematologic safety of chronic brain-penetrating erythropoietin dosing in APP/PS1 mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:627-636. [PMID: 31660425 PMCID: PMC6807369 DOI: 10.1016/j.trci.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction Low blood-brain barrier (BBB) penetration and hematopoietic side effects limit the therapeutic development of erythropoietin (EPO) for Alzheimer's disease (AD). A fusion protein of EPO and a chimeric monoclonal antibody targeting the mouse transferrin receptor (cTfRMAb) has been engineered. The latter drives EPO into the brain via receptor-mediated transcytosis across the BBB and increases its peripheral clearance to reduce hematopoietic side effects of EPO. Our previous work shows the protective effects of this BBB-penetrating EPO in AD mice but hematologic effects have not been studied. Herein, we investigate the hematologic safety and therapeutic effects of chronic cTfRMAb-EPO dosing, in comparison to recombinant human EPO (rhu-EPO), in AD mice. Methods Male APPswe PSEN1dE9 (APP/PS1) mice (9.5 months) were treated with saline (n = 11), and equimolar doses of cTfRMAb-EPO (3 mg/kg, n = 7), or rhu-EPO (0.6 mg/kg, n = 9) 2 days/week subcutaneously for 6 weeks, compared to saline-treated wild-type mice (n = 10). At 6 weeks, exploration and memory were assessed, and mice were sacrificed at 8 weeks. Spleens were weighed, and brains were evaluated for amyloid beta (Aβ) load and synaptophysin. Blood was collected at 4, 6 and 8 weeks for a complete blood count and white blood cells differential. Results cTfRMAb-EPO transiently increased reticulocyte counts after 4 weeks, followed by normalization of reticulocytes at 6 and 8 weeks. rhu-EPO transiently increased red blood cell count, hemoglobin and hematocrit, and significantly decreased mean corpuscular volume and reticulocytes at 4 weeks, which remained low at 6 weeks. At 8 weeks, a significant decline in red blood cell indices was observed with rhu-EPO treatment. Exploration and cognitive deficits were significantly worse in APP/PS1-rhu-EPO mice. Both cTfRMAb-EPO and rhu-EPO decreased 6E10-positive brain Aβ load; however, cTfRMAb-EPO and not rhu-EPO selectively reduced brain Aβ1-42 and elevated synaptophysin expression. Discussion Chronic treatment with cTfRMAb-EPO results in better hematologic safety, behavioral, and therapeutic indices compared with rhu-EPO, supporting the development of this BBB-penetrable EPO analog for AD. Chimeric monoclonal antibody against the mouse TfR (cTfRMAb)-erythropoietin (EPO) is a brain-penetrating IgG-EPO fusion protein. Chronic treatment with cTfRMAb-EPO does not alter hematology indices in APP/PS1 mice. Equimolar dose of recombinant human EPO significantly alters hematologic indices in APP/PS1 mice. Both cTfRMAb-EPO and recombinant human EPO reduce amyloid beta load in APP/PS1 mice. cTfRMAb-EPO selectively reduces amyloid beta (1–42) and increases synaptophysin in APP/PS1 mice.
Collapse
Affiliation(s)
- Jiahong Sun
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Joshua Yang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Kathrine Whitman
- Department of Neuroscience, Keck Science Department, Claremont Colleges, Claremont, CA, USA
| | - Charlene Zhu
- Department of Neuroscience, Keck Science Department, Claremont Colleges, Claremont, CA, USA
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | | | | | - Rachita K. Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Corresponding author. Tel.: (909) 607-0319; Fax: (909) 607-9826.
| |
Collapse
|
10
|
Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin Res Cardiol 2019; 109:655-672. [PMID: 31562542 PMCID: PMC7239817 DOI: 10.1007/s00392-019-01554-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Background Multiple circulatory factors are increased in heart failure (HF). Many have been linked to cardiac and/or skeletal muscle tissue processes, which in turn might influence physical activity and/or capacity during HF. This study aimed to provide a better understanding of the mechanisms linking HF with the loss of peripheral function. Methods and results Physical capacity measured by maximum oxygen uptake, myocardial function (measured by echocardiography), physical activity (measured by accelerometry), and mortality data was collected for patients with severe symptomatic heart failure an ejection fraction < 35% (n = 66) and controls (n = 28). Plasma circulatory factors were quantified using a multiplex immunoassay. Multivariate (orthogonal projections to latent structures discriminant analysis) and univariate analyses identified many factors that differed significantly between HF and control subjects, mainly involving biological functions related to cell growth and cell adhesion, extracellular matrix organization, angiogenesis, and inflammation. Then, using principal component analysis, links between circulatory factors and physical capacity, daily physical activity, and myocardial function were identified. A subset of ten biomarkers differentially expressed in patients with HF vs controls covaried with physical capacity, daily physical activity, and myocardial function; eight of these also carried prognostic value. These included established plasma biomarkers of HF, such as NT-proBNP and ST2 along with recently identified factors such as GDF15, IGFBP7, and TfR, as well as a new factor, galectin-4. Conclusions These findings reinforce the importance of systemic circulatory factors linked to hemodynamic stress responses and inflammation in the pathogenesis and progress of HF disease. They also support established biomarkers for HF and suggest new plausible markers. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00392-019-01554-3) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Role of transferrin receptor in hepatitis C viral infection. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV) is the main pathogen causing chronic hepatitis and primary liver cancer. Various viral proteins and host cell molecules are involved in the HCV cell entry, but the mechanism of infection has not been completely elucidated. The transferrin receptor can act as a receptor for many viruses during cell entry. The transferrin receptor is not only closely related to HCV-induced iron metabolism disorders but also mediates the fusion of HCV with the host cell membrane as a specific receptor for CD81-dependent viral adhesion.
Collapse
|
12
|
Ha JH, Doguer C, Flores SRL, Wang T, Collins JF. Progressive Increases in Dietary Iron Are Associated with the Emergence of Pathologic Disturbances of Copper Homeostasis in Growing Rats. J Nutr 2018; 148:373-378. [PMID: 29546308 PMCID: PMC6669950 DOI: 10.1093/jn/nxx070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Background Consumption of a high-iron diet causes copper deficiency in weanling rodents; however, the minimum amount of dietary iron that disrupts copper homeostasis has not been established. Objective We tested the hypothesis that dietary iron at only several-fold above physiologic requirements would cause copper depletion. Methods Weanling male Sprague-Dawley rats (n = 6/group) were fed AIN-93G-based diets with adequate (88 µg Fe/g = 1×), or excessive (4×, 9.5×, 18.5×, 38×, or 110×) iron content for 7 wk (110× group, due to notable morbidity) or 8 wk (all other groups). Copper-related physiologic parameters were then assessed. Results A hierarchy of copper-related, pathologic symptoms was noted as dietary iron concentrations increased. All statistical comparisons reported here refer to differences from the 1× (i.e., control) group. The highest iron concentration (110×) impaired growth (final body weights decreased ∼40%; P < 0.0001), and caused anemia (blood hemoglobin and hematocrit decreased ∼65%; P < 0.0001) and hepatic copper depletion (>85% reduction; P < 0.01). Cardiac hypertrophy occurred in the 110× (∼130% increase in mass; P < 0.0001) and 38× (∼25% increase; P < 0.05) groups, whereas cardiac copper content was lower in the 110× (P < 0.01), 38× (P < 0.01), and 18.5× (P < 0.05) groups (∼70% reductions). Splenic copper was also depleted in the 110× (>90% reduction; P < 0.0001), and in the 38× (P < 0.001) and 18.5× (P < 0.01) groups (∼70% reductions). Moreover, serum ceruloplasmin activity was decreased in the 110× and 38× (>90% reductions; P < 0.0001), and 18.5× (P < 0.001) and 9.5× (P < 0.05) (∼50% reductions) groups, typifying moderate to severe copper deficiency. Conclusions Increasing dietary iron intakes to ∼9.5-fold above dietary recommendations caused copper deficiency. Importantly, human iron supplementation is common, and recommended intakes for at-risk individuals may be ≤10-fold above the RDA. Whether these iron intakes perturb copper metabolism is worth considering, especially since copper defi-ciency can impair iron utilization (e.g., by decreasing the ferroxidase activity of ceruloplasmin).
Collapse
Affiliation(s)
- Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Shireen RL Flores
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Tao Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL,Regenerative Medicine Research Center, Sichuan University, Chengdu, China
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL,Address correspondence to JFC (e-mail: )
| |
Collapse
|
13
|
Boyd AL, Reid JC, Salci KR, Aslostovar L, Benoit YD, Shapovalova Z, Nakanishi M, Porras DP, Almakadi M, Campbell CJV, Jackson MF, Ross CA, Foley R, Leber B, Allan DS, Sabloff M, Xenocostas A, Collins TJ, Bhatia M. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat Cell Biol 2017; 19:1336-1347. [PMID: 29035359 DOI: 10.1038/ncb3625] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both in vitro co-culture platforms and in vivo xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation. In vivo administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.
Collapse
Affiliation(s)
- Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Kyle R Salci
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lili Aslostovar
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Yannick D Benoit
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Zoya Shapovalova
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mohammed Almakadi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Clinton J V Campbell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Michael F Jackson
- Central Animal Core Imaging and Transgenic Facilities, Central Animal Care Services, Rady Faculty of Health Sciences, University of Manitoba, 710 William Avenue, SR426 Winnipeg, Manitoba R3E 0Z3, Canada
| | - Catherine A Ross
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Brian Leber
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - David S Allan
- Department of Medicine, Division of Hematology, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Mitchell Sabloff
- Department of Medicine, Division of Hematology, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Tony J Collins
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The discovery of several genetic variants associated with erythroid traits and subsequent elucidation of their functional mechanisms are exemplars of the power of the new genetic and genomic technology. The present review highlights findings from recent genetic studies related to the control of erythropoiesis and dyserythropoiesis, and fetal hemoglobin, an erythroid-related trait. RECENT FINDINGS Identification of the genetic modulators of erythropoiesis involved two approaches: genome-wide association studies (GWASs) using single nucleotide polymorphism (SNP) arrays that revealed the common genetic variants associated with erythroid phenotypes (hemoglobin, red cell count, MCV, MCH) and fetal hemoglobin; and massive parallel sequencing such as whole genome sequencing (WGS) and whole exome sequencing (WES) that led to the discovery of the rarer variants (GFI1B, SBDS, RPS19, PKLR, EPO, EPOR, KLF1, GATA1). Functional and genomic studies aided by computational approaches and gene editing technology refined the regions encompassing the putative causative SNPs and confirmed their regulatory role at different stages of erythropoiesis. SUMMARY Five meta-analysis of GWASs identified 17 genetic loci associated with erythroid phenotypes, which are potential regulators of erythropoiesis. Some of these loci showed pleiotropy associated with multiple erythroid traits, suggesting undiscovered molecular mechanisms and challenges underlying erythroid biology. Other sequencing strategies (WGS and WES) further elucidated the role of rare variants in dyserythropoiesis. Integration of common and rare variant studies with functional assays involving latest genome-editing technologies will significantly improve our understanding of the genetics underlying erythropoiesis and erythroid disorders.
Collapse
Affiliation(s)
- Laxminath Tumburu
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, Maryland, USA
| | | |
Collapse
|
15
|
Shao Y, Wang H, Liu C, Cao Q, Fu R, Wang H, Wang T, Qi W, Shao Z. Transforming growth factor 15 increased in severe aplastic anemia patients. ACTA ACUST UNITED AC 2017; 22:548-553. [PMID: 28385068 DOI: 10.1080/10245332.2017.1311462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The patients with severe aplastic anemia (SAA) usually rely on red cell transfusion which lead to secondary iron overload. Transforming growth differentiation factor-15 (GDF-15) plays an important role in erythropoiesis and iron regulation. In this study, we investigated the level of GDF-15 and other indexes of iron metabolism in SAA patients to explore the correlation with GDF-15 and iron overload in SAA. METHODS The levels of serum GDF-15, hepcidin (Hepc), and erythropoietin (EPO) were determined by ELISA. The levels of serum iron (SI), ferritin, TIBC, and transferrin saturation (TS) were measured by an auto analyzer. Iron staining of bone marrow cells was used for testing extracellular and intracellular iron. RESULTS The GDF-15 level in the experimental group was higher than that of the case-control group and normal control group (all p < 0.05). The Hepc level in the experimental group and case-control group were both higher than that of healthy controls (all p < 0.05). The Hepc level was significantly lower in the experimental group patients who had excessive GDF-15 (r = -0.766, p = 0.000). There was a positive correlation between the level of GDF15 and EPO in the experimental group (r = 0.68, p < 0.000). The level of GDF15 in SAA patients was positively correlated with SI levels (r = 0.537, p = 0.008), TS levels (r = 0.466, p = 0.025), and sideroblasts (%) (r = 0.463, p = 0.026). Moreover, there was a positive correlation between GDF-15 level and blood transfusion-dependent time (r = 0.739, p = 0.000). DISCUSSION Our data indicated that GDF-15 plays an important role in iron metabolism in SAA. GDF-15 might be a novel target for SAA therapy.
Collapse
Affiliation(s)
- Yuanyuan Shao
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Honglei Wang
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Chunyan Liu
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Qiuying Cao
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Rong Fu
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Huaquan Wang
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Ting Wang
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Weiwei Qi
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| | - Zonghong Shao
- a Department of Hematology , Tianjin Medical University General Hospital , Tianjin , P. R. China
| |
Collapse
|
16
|
Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 2017; 129:3332-3343. [PMID: 28336526 DOI: 10.1182/blood-2016-09-741611] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
The developmental pathway for human megakaryocytes remains unclear, and the definition of pure unipotent megakaryocyte progenitor is still controversial. Using single-cell transcriptome analysis, we have identified a cluster of cells within immature hematopoietic stem- and progenitor-cell populations that specifically expresses genes related to the megakaryocyte lineage. We used CD41 as a positive marker to identify these cells within the CD34+CD38+IL-3RαdimCD45RA- common myeloid progenitor (CMP) population. These cells lacked erythroid and granulocyte-macrophage potential but exhibited robust differentiation into the megakaryocyte lineage at a high frequency, both in vivo and in vitro. The efficiency and expansion potential of these cells exceeded those of conventional bipotent megakaryocyte/erythrocyte progenitors. Accordingly, the CD41+ CMP was defined as a unipotent megakaryocyte progenitor (MegP) that is likely to represent the major pathway for human megakaryopoiesis, independent of canonical megakaryocyte-erythroid lineage bifurcation. In the bone marrow of patients with essential thrombocythemia, the MegP population was significantly expanded in the context of a high burden of Janus kinase 2 mutations. Thus, the prospectively isolatable and functionally homogeneous human MegP will be useful for the elucidation of the mechanisms underlying normal and malignant human hematopoiesis.
Collapse
|