1
|
Nascimento M, Moura S, Parra L, Vasconcellos V, Costa G, Leite D, Dias M, Fernandes TVA, Hoelz L, Pimentel L, Bastos M, Boechat N. Ponatinib: A Review of the History of Medicinal Chemistry behind Its Development. Pharmaceuticals (Basel) 2024; 17:1361. [PMID: 39459001 PMCID: PMC11510555 DOI: 10.3390/ph17101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The primary treatment for chronic myeloid leukemia (CML) involves first- and second-generation tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, bosutinib, and dasatinib. However, these medications are ineffective against mutations in the kinase domain of the ABL1 protein, particularly in the protein with the T315I mutation. To address this, ponatinib (PNT), a third-generation inhibitor, was developed. Despite its efficacy in treating the BCR-ABL1T315I mutation, the use of PNT was briefly suspended in 2013 due to serious adverse effects but was subsequently reintroduced to the market. During the drug discovery and development process, it is rare to consolidate all information into a single article, as is the case with ponatinib. This review aims to compile and chronologically organize the research on the discovery of ponatinib using medicinal chemistry tools and computational methods. It includes in silico calculations, such as the octanol/water partition coefficient (cLogP) via SwissAdme, and 2D maps of intermolecular interactions through molecular docking. This approach enhances understanding for both specialists and those interested in medicinal chemistry and pharmacology, while also contextualizing future directions for further optimizations of ponatinib, facilitating the development of new analogs of this crucial inhibitor for the treatment of CML and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL).
Collapse
Affiliation(s)
- Mayara Nascimento
- Programa de Pós-Graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (M.N.); (S.M.)
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Stefany Moura
- Programa de Pós-Graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil; (M.N.); (S.M.)
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Lidia Parra
- Programa de Pós-Graduação Acadêmico em Pesquisa Translacional em Fármacos e Medicamentos–Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Valeska Vasconcellos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
- Programa de Pós-Graduação Acadêmico em Pesquisa Translacional em Fármacos e Medicamentos–Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Gabriela Costa
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Debora Leite
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Maria Dias
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Tácio Vinício Amorim Fernandes
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Lucas Hoelz
- Laboratório Computacional de Química Medicinal—LCQM, Instituto Federal do Rio de Janeiro—IFRJ, Campus Pinheiral, Pinheiral 27197-000, RJ, Brazil;
| | - Luiz Pimentel
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Monica Bastos
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos–Fiocruz, Manguinhos, Rio de Janeiro 21041-250, RJ, Brazil; (V.V.); (G.C.); (D.L.); (M.D.); (T.V.A.F.); (L.P.); (M.B.)
| |
Collapse
|
2
|
Chaudhary P, Chaudhary S, Patel F, Patel S, Vaishnani T, Trivedi N, Patel D, Sonagara T, Hirapara A, Vyas K, Patel L, Kumar R, Chakraborty N, Sharma D, Suthar J, Kamdar P, Jajodia E, Ahmad F, Arora N. Validation of a novel NGS based BCR::ABL1 kinase domain mutation detection assay in Indian cohort. Sci Rep 2024; 14:15745. [PMID: 38977756 PMCID: PMC11231265 DOI: 10.1038/s41598-024-66310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The efficacy and treatment outcome of a CML patient are heavily dependent on BCR::ABL1 kinase domain (KD) mutation status. Next-generation sequencing technology is a bright alternative to the previously used sanger sequencing method due to its global presence in diagnostic setups, massive parallel sequencing ability, and far better sensitivity. In the present study, we have demonstrated a new protocol for kinase domain mutation analysis using the next-generation sequencing (NGS) method using the ion torrent sequencing platform. This protocol uses RNA as the starting material, followed by nested PCR to amplify the fusion transcript, which is subsequently used as a template for NGS. Initial validation and comparison of this assay with the sanger sequencing (SS) method yielded 95.23% agreement. CML samples (n = 121) with a failure to TKI response were subjected to this newly developed NGS-based assay to detect KD mutations, from which samples were found to have mutations with a sensitivity ranging from 2.32 to 93.41%. A total of 34.71% of samples (n = 42) were found to be positive for one or more KD mutations, whereas 65.29% of samples (n = 81) were found to be negative. Nine samples out of 42 positive samples, i.e., 21.42%, were found to have compound mutations. This is one of the first studies from India, which includes more than 160 samples and is analyzed by the NGS approach for KD mutation analysis.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India.
| | - Spandan Chaudhary
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India.
| | - Falguni Patel
- Department of Biotechnology and Microbiology, Shri M.M. Patel Institute of Science and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, India
| | - Shiv Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Toral Vaishnani
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Nikha Trivedi
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Dhiren Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Tushar Sonagara
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Ashish Hirapara
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Kavisha Vyas
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Lokesh Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Raja Kumar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Nikkan Chakraborty
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Divya Sharma
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Jigar Suthar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Payal Kamdar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Ekta Jajodia
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Firoz Ahmad
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Neeraj Arora
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Prakash TC, Enkemann S. Current Progress on the Influence Human Genetics Has on the Efficacy of Tyrosine Kinase Inhibitors Used to Treat Chronic Myeloid Leukemia. Cureus 2024; 16:e56545. [PMID: 38646295 PMCID: PMC11027790 DOI: 10.7759/cureus.56545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) has become the mainstay of treatment in patients suffering from chronic myeloid leukemia (CML), an adult leukemia caused by a reciprocal translocation between chromosomes 9 and 22, which creates an oncogene resulting in a myeloproliferative neoplasm. These drugs function by inhibiting the ATP-binding site on the fusion oncoprotein and subsequently halting proliferative activity. The goal of this work is to investigate the current state of research into genetic factors that influence the efficacy of four FDA-approved TKIs used to treat CML. This overview attempts to identify genetic criteria that could be considered when choosing one drug over the others and to identify where more research is needed. Our results suggest that the usual liver enzymes impacting patient response may not be a major factor affecting the efficacy of imatinib, nilotinib, and bosutinib, and yet, that is where most of the past research has focused. More research is warranted on the impact that human polymorphisms of the CYP enzymes have on dasatinib. The impact of polymorphisms in UGT1A1 should be investigated thoroughly in other TKIs, not only nilotinib. The role of influx and efflux transporters has been inconsistent thus far, possibly due to failures to account for the multiple proteins that can transport TKIs and the impact that tumors have on transporter expression. Because physicians cannot currently use a patient's genetic profile to better target their treatment with TKIs, it is critical that more research be conducted on auxiliary pathways or off-target binding effects to generate new leads for further study. Hopefully, new avenues of research will help explain treatment failures and improve patient outcomes.
Collapse
Affiliation(s)
- Tara C Prakash
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| | - Steven Enkemann
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Spartanburg, USA
| |
Collapse
|
4
|
Martín Roldán A, Sánchez Suárez MDM, Alarcón-Payer C, Jiménez Morales A, Puerta Puerta JM. A Real-World Evidence-Based Study of Long-Term Tyrosine Kinase Inhibitors Dose Reduction or Discontinuation in Patients with Chronic Myeloid Leukaemia. Pharmaceutics 2023; 15:pharmaceutics15051363. [PMID: 37242605 DOI: 10.3390/pharmaceutics15051363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic approach to chronic myeloid leukaemia (CML) has changed in recent years. As a result, a high percentage of current patients in the chronic phase of the disease almost have an average life expectancy. Treatment also aims to achieve a stable deep molecular response (DMR) that might allow dose reduction or even treatment discontinuation. These strategies are often used in authentic practices to reduce adverse events, yet their impact on treatment-free remission (TFR) is a controversial debate. In some studies, it has been observed that as many as half of patients can achieve TFR after the discontinuation of TKI treatment. If TFR was more widespread and globally achievable, the perspective on toxicity could be changed. We retrospectively analysed 80 CML patients treated with tyrosine kinase inhibitor (TKI) at a tertiary hospital between 2002 and 2022. From them, 71 patients were treated with low doses of TKI, and 25 were eventually discontinued, 9 of them being discontinued without a previous dose reduction. Regarding patients treated with low doses, only 11 of them had molecular recurrence (15.4%), and the average molecular recurrence free survival (MRFS) was 24.6 months. The MRFS outcome was not affected by any of the variables examined, including gender, Sokal risk scores, prior treatment with interferon or hydroxycarbamide, age at the time of CML diagnosis, the initiation of low-dose therapy and the mean duration of TKI therapy. After TKI discontinuation, all but four patients maintained MMR, with a median follow-up of 29.2 months. In our study, TFR was estimated at 38.9 months (95% CI 4.1-73.9). This study indicates that low-dose treatment and/or TKI discontinuation is a salient, safe alternative to be considered for patients who may suffer adverse events (AEs), which hinder the adherence of TKI and/or deteriorate their life quality. Together with the published literature, it shows that it appears safe to administer reduced doses to patients with CML in the chronic phase. The discontinuation of TKI therapy once a DMR has been reached is one of the goals for these patients. The patient should be assessed globally, and the most appropriate strategy for management should be considered. Future studies are needed to ensure that this approach is included in clinical practice because of the benefits for certain patients and the increased efficiency for the healthcare system.
Collapse
Affiliation(s)
- Alicia Martín Roldán
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | | | | | | | - José Manuel Puerta Puerta
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
5
|
BH3 mimetics and TKI combined therapy for Chronic Myeloid Leukemia. Biochem J 2023; 480:161-176. [PMID: 36719792 DOI: 10.1042/bcj20210608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023]
Abstract
Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.
Collapse
|
6
|
Cytotoxicity of Isoxazole Curcumin Analogs on Chronic Myeloid Leukemia-Derived K562 Cell Lines Sensitive and Resistant to Imatinib. Int J Mol Sci 2023; 24:ijms24032356. [PMID: 36768681 PMCID: PMC9916957 DOI: 10.3390/ijms24032356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Despite curcumin (CUR) inhibiting cell proliferation in vitro by activating apoptotic cell death, its use in pharmacological therapy is hampered by poor solubility, low stability in biological fluids, and rapid removal from the body. Therefore, CUR-derivatives with better biological and chemical-physical characteristics are needed. The bis-ketone moiety of CUR strongly influences its stability in slightly alkaline solutions such as plasma. Here, we considered its replacement with isoxazole, beta-enamine, or oxime groups to obtain more stable derivatives. The evaluation of the chemical-physical characteristics showed that only of the isoxazole derivatives 2 and 22 had better potential than CUR in terms of bioavailability. The UV-visible spectrum analysis showed that derivatives 2 and 22 had better stability than CUR in solutions mimicking the biological fluids. When tested on a panel of cell lines, derivatives 2 and 22 had marked cytotoxicity (IC50 = 0.5 µM) compared with CUR only (IC50 = 17 µM) in the chronic myeloid leukemia (CML)-derived K562 cell line. The derivative 22 was the more selective for CML cells. When administered at the average concentration found for CUR in the blood of patients, derivatives 2 and 22 had potent effects on cell cycle progression and apoptosis initiation, while CUR was ineffective. The apoptotic effect of derivatives 2 and 22 was associated with low necrosis. In addition, derivative 22 was able to reverse drug resistance in K562 cells resistant to imatinib (IM), the reference drug used in CML therapy. The cytotoxicity of derivative 22 on IM-sensitive and resistant cells was associated with upregulation of FOXN3 and CDKN1A expression, G2/M arrest, and triggering of apoptosis. In conclusion, derivative 22 has chemical-physical characteristics and biological effects superior to CUR, which allow us to hypothesize its future use in the therapy of CML and CML forms resistant to IM, either alone or in combination with this drug.
Collapse
|
7
|
Panuzzo C, Pironi L, Maglione A, Rocco S, Stanga S, Riganti C, Kopecka J, Ali MS, Pergolizzi B, Bracco E, Cilloni D. mTORC2 Is Activated under Hypoxia and Could Support Chronic Myeloid Leukemia Stem Cells. Int J Mol Sci 2023; 24:ijms24021234. [PMID: 36674750 PMCID: PMC9865638 DOI: 10.3390/ijms24021234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Hypoxia is a critical condition that governs survival, self-renewal, quiescence, metabolic shift and refractoriness to leukemic stem cell (LSC) therapy. The present study aims to investigate the hypoxia-driven regulation of the mammalian Target of the Rapamycin-2 (mTORC2) complex to unravel it as a novel potential target in chronic myeloid leukemia (CML) therapeutic strategies. After inducing hypoxia in a CML cell line model, we investigated the activities of mTORC1 and mTORC2. Surprisingly, we detected a significant activation of mTORC2 at the expense of mTORC1, accompanied by the nuclear localization of the main substrate phospho-Akt (Ser473). Moreover, the Gene Ontology analysis of CML patients' CD34+ cells showed enrichment in the mTORC2 signature, further strengthening our data. The deregulation of mTOR complexes highlights how hypoxia could be crucial in CML development. In conclusion, we propose a mechanism by which CML cells residing under a low-oxygen tension, i.e., in the leukemia quiescent LSCs, singularly regulate the mTORC2 and its downstream effectors.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
- Correspondence:
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Simone Rocco
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| |
Collapse
|
8
|
Ma J, Pettit N, Talburt J, Wang S, Weissman SM, Yang MQ. Integrating Single-Cell Transcriptome and Network Analysis to Characterize the Therapeutic Response of Chronic Myeloid Leukemia. Int J Mol Sci 2022; 23:14335. [PMID: 36430822 PMCID: PMC9695508 DOI: 10.3390/ijms232214335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by a unique BCR-ABL fusion gene. Tyrosine kinase inhibitors (TKIs) were developed to target the BCR-ABL oncoprotein, inhibiting its abnormal kinase activity. TKI treatments have significantly improved CML patient outcomes. However, the patients can develop drug resistance and relapse after therapy discontinues largely due to intratumor heterogeneity. It is critical to understand the differences in therapeutic responses among subpopulations of cells. Single-cell RNA sequencing measures the transcriptome of individual cells, allowing us to differentiate and analyze individual cell populations. Here, we integrated a single-cell RNA sequencing profile of CML stem cells and network analysis to decipher the mechanisms of distinct TKI responses. Compared to normal hematopoietic stem cells, a set of genes that were concordantly differentially expressed in various types of stem cells of CML patients was revealed. Further transcription regulatory network analysis found that most of these genes were directly controlled by one or more transcript factors and the genes have more regulators in the cells of the patients who responded to the treatment. The molecular markers including a known drug-resistance gene and novel gene signatures for treatment response were also identified. Moreover, we combined protein-protein interaction network construction with a cancer drug database and uncovered the drugs that target the marker genes directly or indirectly via the protein interactions. The gene signatures and their interacted proteins identified by this work can be used for treatment response prediction and lead to new strategies for drug resistance monitoring and prevention. Our single-cell-based findings offered novel insights into the mechanisms underlying the therapeutic response of CML.
Collapse
MESH Headings
- Humans
- Transcriptome
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl
Collapse
Affiliation(s)
- Jialu Ma
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Nathan Pettit
- Department of Philosophy and Interdisciplinary Studies, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - John Talburt
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shanzhi Wang
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | | | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
9
|
Ye W, Wu X, Wang X, Wei X, Tang Y, Ouyang X, Gong Y. The proteolysis targeting chimera GMB-475 combined with dasatinib for the treatment of chronic myeloid leukemia with BCR::ABL1 mutants. Front Pharmacol 2022; 13:931772. [PMID: 36263131 PMCID: PMC9574342 DOI: 10.3389/fphar.2022.931772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with chronic myeloid leukemia (CML) show resistance to tyrosine kinase inhibitors (TKIs) targeting ABL1 due to the emergence of BCR::ABL1 mutants, especially compound mutants during the treatment, which brings great challenges to clinical practice. Combination therapy is an effective strategy for drug resistance. GMB-475, a proteolysis targeting chimera (PROTAC) targeting the myristoyl pocket of ABL1 in an allosteric manner, degrades the BCR::ABL1 through the ubiquitin–proteasome pathway. In this study, we combined GMB-475 with orthosteric TKIs targeting ABL1 to overcome resistance. We constructed Ba/F3 cells carrying BCR::ABL1 mutants by gene cloning technology and compared the effects of combination therapy with those of monotherapy on the biological characteristics and signaling pathways in CML cells. We found that the effects of ABL1 inhibitors, including imatinib, dasatinib, ponatinib, and ABL001, on growth inhibition and promoting apoptosis of Ba/F3 cells with BCR::ABL1 mutants, especially compound mutants, were weakened. GMB-475 combined with TKIs, especially dasatinib, synergistically inhibited growth, promoted apoptosis, and blocked the cell cycle of Ba/F3 cells carrying BCR::ABL1 mutants and synergistically blocked multiple molecules in the JAK-STAT pathway. In conclusion, dasatinib enhanced the antitumor effect of GMB-475; that is, the combination of PROTAC targeting ABL1 in an allosteric manner and orthosteric TKIs, especially dasatinib, provides a novel idea for the treatment of CML patients with BCR::ABL1 mutants in clinical practice.
Collapse
|
10
|
1,4-Naphthoquinone (CNN1) Induces Apoptosis through DNA Damage and Promotes Upregulation of H2AFX in Leukemia Multidrug Resistant Cell Line. Int J Mol Sci 2022; 23:ijms23158105. [PMID: 35897681 PMCID: PMC9330061 DOI: 10.3390/ijms23158105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
The multidrug resistance (MDR) phenotype is one of the major obstacles in the treatment of chronic myeloid leukemia (CML) in advantage stages such as blast crisis. In this scenario, more patients develop resistance mechanisms during the course of the disease, making tyrosine kinase inhibitors (TKIs) target therapies ineffective. Therefore, the aim of the study was to examine the pharmacological role of CNN1, a para-naphthoquinone, in a leukemia multidrug resistant cell line. First, the in vitro cytotoxic activity of Imatinib Mesylate (IM) in K-562 and FEPS cell lines was evaluated. Subsequently, membrane integrity and mitochondrial membrane potential assays were performed to assess the cytotoxic effects of CNN1 in K-562 and FEPS cell lines, followed by cell cycle, alkaline comet assay and annexin V-Alexa Fluor® 488/propidium iodide assays (Annexin/PI) using flow cytometry. RT-qPCR was used to evaluate the H2AFX gene expression. The results demonstrate that CNN1 was able to induce apoptosis, cell membrane rupture and mitochondrial membrane depolarization in leukemia cell lines. In addition, CNN1 also induced genotoxic effects and caused DNA fragmentation, cell cycle arrest at the G2/M phase in leukemia cells. No genotoxicity was observed on peripheral blood mononuclear cells (PBMC). Additionally, CNN1 increased mRNA levels of H2AFX. Therefore, CNN1 presented anticancer properties against leukemia multidrug resistant cell line being a potential anticancer agent for the treatment of resistant CML.
Collapse
|
11
|
Shehata AM, Gohar SF, Muharram NM, Eldin SMK. LncRNA CCAT2 expression at diagnosis predicts imatinib response in chronic phase chronic myeloid leukemia patients. Leuk Res 2022; 116:106838. [DOI: 10.1016/j.leukres.2022.106838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 01/26/2023]
|
12
|
Xie T, Saleh T, Rossi P, Miller D, Kalodimos CG. Imatinib can act as an Allosteric Activator of Abl Kinase. J Mol Biol 2022; 434:167349. [PMID: 34774565 PMCID: PMC8752476 DOI: 10.1016/j.jmb.2021.167349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Imatinib is an ATP-competitive inhibitor of Bcr-Abl kinase and the first drug approved for chronic myelogenous leukemia (CML) treatment. Here we show that imatinib binds to a secondary, allosteric site located in the myristoyl pocket of Abl to function as an activator of the kinase activity. Abl transitions between an assembled, inhibited state and an extended, activated state. The equilibrium is regulated by the conformation of the αΙ helix, which is located nearby the allosteric pocket. Imatinib binding to the allosteric pocket elicits an αΙ helix conformation that is not compatible with the assembled state, thereby promoting the extended state and stimulating the kinase activity. Although in wild-type Abl the catalytic pocket has a much higher affinity for imatinib than the allosteric pocket does, the two binding affinities are comparable in Abl variants carrying imatinib-resistant mutations in the catalytic site. A previously isolated imatinib-resistant mutation in patients appears to be mediating its function by increasing the affinity of imatinib for the allosteric pocket, providing a hitherto unknown mechanism of drug resistance. Our results highlight the benefit of combining imatinib with allosteric inhibitors to maximize their inhibitory effect on Bcr-Abl.
Collapse
Affiliation(s)
- Tao Xie
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Tamjeed Saleh
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Darcie Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
13
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
From Bench to Bedside: The Evolution of Genomics and Its Implications for the Current and Future Management of Multiple Myeloma. ACTA ACUST UNITED AC 2021; 27:213-221. [PMID: 34549910 DOI: 10.1097/ppo.0000000000000523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT The summation of 20 years of biological studies and the comprehensive analysis of more than 1000 multiple myeloma genomes with data linked to clinical outcome has enabled an increased understanding of the pathogenesis of multiple myeloma in the context of normal plasma cell biology. This novel data have facilitated the identification of prognostic markers and targets suitable for therapeutic manipulation. The challenge moving forward is to translate this genetic and biological information into the clinic to improve patient care. This review discusses the key data required to achieve this and provides a framework within which to explore the use of response-adapted, biologically targeted, molecularly targeted, and risk-stratified therapeutic approaches to improve the management of patients with multiple myeloma.
Collapse
|
15
|
Mojidra R, Hole A, Iwasaki K, Noothalapati H, Yamamoto T, C MK, Govekar R. DNA Fingerprint Analysis of Raman Spectra Captures Global Genomic Alterations in Imatinib-Resistant Chronic Myeloid Leukemia: A Potential Single Assay for Screening Imatinib Resistance. Cells 2021; 10:cells10102506. [PMID: 34685486 PMCID: PMC8533852 DOI: 10.3390/cells10102506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Monitoring the development of resistance to the tyrosine kinase inhibitor (TKI) imatinib in chronic myeloid leukemia (CML) patients in the initial chronic phase (CP) is crucial for limiting the progression of unresponsive patients to terminal phase of blast crisis (BC). This study for the first time demonstrates the potential of Raman spectroscopy to sense the resistant phenotype. Currently recommended resistance screening strategy include detection of BCR-ABL1 transcripts, kinase domain mutations, complex chromosomal abnormalities and BCR-ABL1 gene amplification. The techniques used for these tests are expensive, technologically demanding and have limited availability in resource-poor countries. In India, this could be a reason for more patients reporting to clinics with advanced disease. A single method which can identify resistant cells irrespective of the underlying mechanism would be a practical screening strategy. During our analysis of imatinib-sensitive and -resistant K562 cells, by array comparative genomic hybridization (aCGH), copy number variations specific to resistant cells were detected. aCGH is technologically demanding, expensive and therefore not suitable to serve as a single economic test. We therefore explored whether DNA finger-print analysis of Raman hyperspectral data could capture these alterations in the genome, and demonstrated that it could indeed segregate imatinib-sensitive and -resistant cells. Raman spectroscopy, due to availability of portable instruments, ease of spectrum acquisition and possibility of centralized analysis of transmitted data, qualifies as a preliminary screening tool in resource-poor countries for imatinib resistance in CML. This study provides a proof of principle for a single assay for monitoring resistance to imatinib, available for scrutiny in clinics.
Collapse
Affiliation(s)
- Rahul Mojidra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; (R.M.); (A.H.)
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India
| | - Arti Hole
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; (R.M.); (A.H.)
| | - Keita Iwasaki
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan;
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan;
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue 690-8504, Japan
| | - Tatsuyuki Yamamoto
- Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan;
- Raman Project Center for Medical and Biological Applications, Shimane University, Matsue 690-8504, Japan
- Correspondence: (T.Y.); (M.K.C.); (R.G.)
| | - Murali Krishna C
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; (R.M.); (A.H.)
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India
- Correspondence: (T.Y.); (M.K.C.); (R.G.)
| | - Rukmini Govekar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; (R.M.); (A.H.)
- Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India
- Correspondence: (T.Y.); (M.K.C.); (R.G.)
| |
Collapse
|
16
|
Side-effects profile and outcomes of ponatinib in the treatment of chronic myeloid leukemia. Blood Adv 2021; 4:530-538. [PMID: 32045474 DOI: 10.1182/bloodadvances.2019000268] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
Ponatinib is associated with cardiovascular adverse events (CAEs), and its frequency in the real world is limited. In this retrospective study, we examined the survival outcomes and associated toxicities in 78 consecutive ponatinib-treated patients with chronic myeloid leukemia (CML) at the Moffitt Cancer Center from January 2011 through December 2017. The most common non-CAE was thrombocytopenia (39.7%), occurring in a dose-dependent fashion. Eighteen patients (23.1%) experienced some form of CAE, with the most common being arrhythmia (9%) and hypertension (7.7%), whereas 3 patients experienced myocardial infarction (3.8%). Before 2014, most patients were started on ponatinib 45 mg daily. There was an inverse correlation between cardio-oncology referral and the number of CAEs (P = .0440); however, a lower ponatinib starting dose, more frequent dose reduction, and increased cardio-oncology referral all were likely to have contributed to the observed decrease in CAEs after 2014. The response rate and 5-year overall survival (OS) were higher than those observed in the Ponatinib Ph+ ALL and CML Evaluation (PACE) trial (major molecular response, 58.7% vs 40% and OS, 76% vs 73%; median follow-up of 32.5 months). Ponatinib-treated patients with chronic phase-CML did not show a significant improvement with allogeneic stem cell transplantation, whereas those with accelerated phase/blast phase-CML had a much better outcome (median OS of 32.9 months vs 9.2 months; P = .01). These results demonstrate that ponatinib is highly effective. Dose adjustments and increased awareness of the cardiotoxicities associated with ponatinib may help maximize its benefits.
Collapse
|
17
|
Głowacki S, Synowiec E, Szwed M, Toma M, Skorski T, Śliwiński T. Relationship between Oxidative Stress and Imatinib Resistance in Model Chronic Myeloid Leukemia Cells. Biomolecules 2021; 11:biom11040610. [PMID: 33924068 PMCID: PMC8074285 DOI: 10.3390/biom11040610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/19/2023] Open
Abstract
Chronic myeloid leukemia (CML) develops due to the presence of the BCR-ABL1 protein, a target of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), used in a CML therapy. CML eradication is a challenge due to developing resistance to TKIs. BCR-ABL1 induces endogenous oxidative stress leading to genomic instability and development of TKI resistance. Model CML cells susceptible or resistant to IM, as well as wild-type, non-cancer cells without the BCR-ABL1 protein were treated with IM, hydrogen peroxide (H2O2) as a model trigger of external oxidative stress, or with IM+H2O2. Accumulation of reactive oxygen species (ROS), DNA damage, activity of selected antioxidant enzymes and glutathione (GSH), and mitochondrial potential (MMP) were assessed. We observed increase in ROS accumulation in BCR-ABL1 positive cells and distinct levels of ROS accumulation in IM-susceptible cells when compared to IM-resistant ones, as well as increased DNA damage caused by IM action in sensitive cells. Depletion of GSH levels and a decreased activity of glutathione peroxidase (GPx) in the presence of IM was higher in the cells susceptible to IM. IM-resistant cells showed an increase of catalase activity and a depletion of MMP. BCR-ABL1 kinase alters ROS metabolism, and IM resistance is accompanied by the changes in activity of GPx, catalase, and alterations in MMP.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/toxicity
- Catalase/metabolism
- Cell Line, Tumor
- DNA Damage
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Glutathione/metabolism
- Glutathione Peroxidase/metabolism
- Imatinib Mesylate/toxicity
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Membrane Potential, Mitochondrial
- Mice
- Oxidative Stress
Collapse
Affiliation(s)
- Sylwester Głowacki
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland;
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
- Correspondence:
| |
Collapse
|
18
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
19
|
Zehtabcheh S, Yousefi AM, Salari S, Safa M, Momeny M, Ghaffari SH, Bashash D. Abrogation of histone deacetylases (HDACs) decreases survival of chronic myeloid leukemia cells: New insight into attenuating effects of the PI3K/c-Myc axis on panobinostat cytotoxicity. Cell Biol Int 2021; 45:1111-1121. [PMID: 33501756 DOI: 10.1002/cbin.11557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Although the identification of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of many cancer types including chronic myeloid leukemia (CML), still adjustment of neoplastic cells to cytotoxic effects of anticancer drugs is a serious challenge. In the area of drug resistance, epigenetic alterations are at the center of attention and the present study aimed to evaluate whether blockage of epigenetics mechanisms using a pan-histone deacetylase (HDAC) inhibitor induces cell death in CML-derived K562 cells. We found that the abrogation of HDACs using panobinostat resulted in a reduction in survival of the K562 cell line through p27-mediated cell cycle arrest. Noteworthy, the results of the synergistic experiments revealed that HDAC suppression could be recruited as a way to potentiate cytotoxicity of Imatinib and to enhance the therapeutic efficacy of CML. Here, we proposed for the first time that the inhibitory effect of panobinostat was overshadowed, at least partially, through the aberrant activation of the phosphoinositide 3-kinase (PI3K)/c-Myc axis. Meanwhile, we found that upon blockage of autophagy and the proteasome pathway, as the main axis involved in the activation of autophagy, the anti-leukemic property of the HDAC inhibitor was potentiated. Taken together, our study suggests the beneficial application of HDAC inhibition in the treatment strategies of CML; however, further in vivo studies are needed to determine the efficacy of this inhibitor, either as a single agent or in combination with small molecule inhibitors of PI3K and/or c-Myc in this malignancy.
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wang F, Wang X, Li N, Liu J, Zhang L, Hui L, Feng A, Wang Z, Wang Y. Prolonged unfolded protein reaction is involved in the induction of chronic myeloid leukemia cell death upon oprozomib treatment. Cancer Sci 2020; 112:133-143. [PMID: 33067904 PMCID: PMC7780017 DOI: 10.1111/cas.14696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
To select the most efficient chemical to induce apoptosis in leukemia cells, a multidrug screen was applied on bone marrow mononuclear cells from chronic myeloid leukemia (CML) patients. Oprozomib (Cpd 21) was chosen for the subsequent experiments. The isobaric tags for relative and absolute quantitation (iTRAQ) was then performed to identify the responsible pathway relative to apoptosis and the results showed that endoplasmic reticulum (ER) chaperones were upregulated. Apoptosis was attributed to a joint effect of calcium leakage andPERK and IRE1α phosphorylation. The PERK branch was responsible for the first wave of cell death that occurred within 24 hours. The later wave of apoptosis was mediated by IRE1α, which transmit apoptotic signals through the ASK-JNK-BIM axis. Release of Ca2+ from ER into cytosol resulted in activation of calpain, which, in turn, cleaved caspase-12. Our data also explained the selective killing effects of oprozomib on CML cells, which relied on proteasome activity. The present study demonstrated that prolonged inhibition of proteasome to trigger unfolded protein response could be an alternative strategy for treating CML in light of tyrosine kinase inhibitors resistance.
Collapse
Affiliation(s)
- Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingyun Hui
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ai Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhonglin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yawen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Calvani M, Dabraio A, Bruno G, De Gregorio V, Coronnello M, Bogani C, Ciullini S, la Marca G, Vignoli M, Chiarugi P, Nardi M, Vannucchi AM, Filippi L, Favre C. β3-Adrenoreceptor Blockade Reduces Hypoxic Myeloid Leukemic Cells Survival and Chemoresistance. Int J Mol Sci 2020; 21:E4210. [PMID: 32545695 PMCID: PMC7352890 DOI: 10.3390/ijms21124210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
β-adrenergic signaling is known to be involved in cancer progression; in particular, beta3-adrenoreceptor (β3-AR) is associated with different tumor conditions. Currently, there are few data concerning β3-AR in myeloid malignancies. Here, we evaluated β3-AR in myeloid leukemia cell lines and the effect of β3-AR antagonist SR59230A. In addition, we investigated the potential role of β3-AR blockade in doxorubicin resistance. Using flow cytometry, we assessed cell death in different in vitro myeloid leukemia cell lines (K562, KCL22, HEL, HL60) treated with SR59230A in hypoxia and normoxia; furthermore, we analyzed β3-AR expression. We used healthy bone marrow cells (BMCs), peripheral blood mononuclear cells (PBMCs) and cord blood as control samples. Finally, we evaluated the effect of SR59230A plus doxorubicin on K562 and K562/DOX cell lines; K562/DOX cells are resistant to doxorubicin and show P-glycoprotein (P-gp) overexpression. We found that SR59230A increased cancer cell lines apoptosis especially in hypoxia, resulting in selective activity for cancer cells; moreover, β3-AR expression was higher in malignancies, particularly under hypoxic condition. Finally, we observed that SR59230A plus doxorubicin increased doxorubicin resistance reversion mainly in hypoxia, probably acting on P-gp. Together, these data point to β3-AR as a new target and β3-AR blockade as a potential approach in myeloid leukemias.
Collapse
MESH Headings
- Adrenergic beta-3 Receptor Antagonists/pharmacology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Fetal Blood/cytology
- Fetal Blood/drug effects
- Fetal Blood/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Propanolamines/pharmacology
- Receptors, Adrenergic, beta-3/metabolism
Collapse
Affiliation(s)
- Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| | - Annalisa Dabraio
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Gennaro Bruno
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Veronica De Gregorio
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Marcella Coronnello
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Costanza Bogani
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (A.M.V.)
| | - Sara Ciullini
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (G.l.M.); (P.C.)
| | - Marina Vignoli
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (G.l.M.); (P.C.)
| | - Margherita Nardi
- Onco-Hematologic Pediatric Center, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (C.B.); (A.M.V.)
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children’s Hospital, 50139 Florence, Italy;
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, 50139 Florence, Italy; (M.C.); (A.D.); (G.B.); (V.D.G.); (S.C.); (M.V.)
| |
Collapse
|
22
|
Hassanzadeh A, Hosseinzadeh E, Rezapour S, Vahedi G, Haghnavaz N, Marofi F. Quercetin Promotes Cell Cycle Arrest and Apoptosis and Attenuates the Proliferation of Human Chronic Myeloid Leukemia Cell Line-K562 Through Interaction with HSPs (70 and 90), MAT2A and FOXM1. Anticancer Agents Med Chem 2020; 19:1523-1534. [PMID: 31362681 DOI: 10.2174/1871520619666190729150442] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic Myeloid Leukaemia (CML) starts in certain blood-forming cells of the bone marrow when cells acquire Philadelphia chromosome. Nowadays, scientists attempt to find novel and safe therapeutic agents and approaches for CML therapy using Tyrosine Kinase Inhibitors (TKIs), CML conventional treatment agents, has some restrictions and also adverse effects. Recently, it has been proposed that phytochemicals, such as flavonoids due to their low side effects and notable safety have the potential to be used for CML therapy. MATERIALS AND METHODS K-562 cells were exposed with three concentrations of the querectin (10, 40 and 80µM) for 12, 24 and 48 hours. After that, these cells apoptosis rate was estimated using Annexin-V/PI staining and flowcytometry analysis, and their proliferation rate was evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT). Finally, the expression of the 70 and 90 kilodalton heat shock proteins (HSP70 and 90), methionine adenosyltransferase 2A (MAT2A), Forkhead box protein M1 (FOXM1), caspase-3 and -8, Bcl-X(L) and Bax involved in leukemic cells survival and proliferation was assessed using Real-Time PCR within 12, 24 and 48 hours after exposure with quercetin 40 and 80µM. RESULTS Considering consequences, querecetin induced apoptosis in K-562 cells, and also abrogated these cells proliferation. On the other hand, RT-PCR results showed a reduction in some of the candidate genes expression, especially HSP70, Bcl-X(L) and FOXM1, when cells were treated with quercetin 40 and 80µM. Also, Bax, caspase-3 and caspase-8 expression was significantly improved in K-562 cells upon quercetin exposure. CONCLUSION We concluded that CML therapy by querecetin due to its anti-proliferative and anti-survival potentials could lead to the promising therapeutic outcome through targeting major survival and proliferation involved genes expression.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hosseinzadeh
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saleheh Rezapour
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navideh Haghnavaz
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Özgür Yurttaş N, Eşkazan AE. Novel therapeutic approaches in chronic myeloid leukemia. Leuk Res 2020; 91:106337. [PMID: 32200189 DOI: 10.1016/j.leukres.2020.106337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The tyrosine kinase inhibitors (TKIs) have revolutionized the management of chronic myeloid leukemia (CML) and BCR-ABL1 inhibitors form the mainstay of CML treatment. Although patients with CML generally do well under TKI therapy, there is a subgroup of patients who are resistant and/or intolerant to TKIs. In these group of patients, there is the need of additional treatment strategies. In this review, we provide an update on the current knowledge of these novel treatment approaches that can be used alone and/or in combination with TKIs.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Everolimus/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Expression
- Histone Deacetylase Inhibitors/therapeutic use
- Homoharringtonine/therapeutic use
- Humans
- Immunotherapy/methods
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy/methods
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Piperidines/therapeutic use
- Polyethylene Glycols/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Quinolones/therapeutic use
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
24
|
Soverini S, Abruzzese E, Bocchia M, Bonifacio M, Galimberti S, Gozzini A, Iurlo A, Luciano L, Pregno P, Rosti G, Saglio G, Stagno F, Tiribelli M, Vigneri P, Barosi G, Breccia M. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol 2019; 12:131. [PMID: 31801582 PMCID: PMC6894351 DOI: 10.1186/s13045-019-0815-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/27/2019] [Indexed: 12/31/2022] Open
Abstract
BCR-ABL1 kinase domain (KD) mutation status is considered to be an important element of clinical decision algorithms for chronic myeloid leukemia (CML) patients who do not achieve an optimal response to tyrosine kinase inhibitors (TKIs). Conventional Sanger sequencing is the method currently recommended to test BCR-ABL1 KD mutations. However, Sanger sequencing has limited sensitivity and cannot always discriminate between polyclonal and compound mutations. The use of next-generation sequencing (NGS) is increasingly widespread in diagnostic laboratories and represents an attractive alternative. Currently available data on the clinical impact of NGS-based mutational testing in CML patients do not allow recommendations with a high grade of evidence to be prepared. This article reports the results of a group discussion among an ad hoc expert panel with the objective of producing recommendations on the appropriateness of clinical decisions about the indication for NGS, the performance characteristics of NGS platforms, and the therapeutic changes that could be applied based on the use of NGS in CML. Overall, these recommendations might be employed to inform clinicians about the practical use of NGS in CML.
Collapse
Affiliation(s)
- Simona Soverini
- Hematology/Oncology "L. e A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy.
| | | | - Monica Bocchia
- Hematology Unit, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | | | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Antonella Gozzini
- Department of Cellular Therapies and Transfusion Medicine, AOU Careggi, Florence, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Patrizia Pregno
- Hematology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Gianantonio Rosti
- Hematology/Oncology "L. e A. Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences of the University of Turin, Mauriziano Hospital, Turin, Italy
| | - Fabio Stagno
- Hematology Section and BMT Unit, Rodolico Hospital, AOU Policlinico-V. Emanuele, Catania, Italy
| | - Mario Tiribelli
- Division of Hematology and Bone Marrow Transplantation, Department of Medical Area, University of Udine, Udine, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine and Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Massimo Breccia
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
25
|
Li S, Bo Z, Jiang Y, Song X, Wang C, Tong Y. Homoharringtonine promotes BCR‑ABL degradation through the p62‑mediated autophagy pathway. Oncol Rep 2019; 43:113-120. [PMID: 31789418 PMCID: PMC6908937 DOI: 10.3892/or.2019.7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023] Open
Abstract
Drug resistance to tyrosine kinase inhibitors (TKIs) is currently a clinical problem in patients with chronic myelogenous leukemia (CML). Homoharringtonine (HHT) is an approved treatment for adult patients with chronic- or accelerated-phase CML who are resistant to TKIs and other therapies; however, the underlying mechanisms remain unclear. In the present study, HHT treatment demonstrated induction of apoptosis in imatinib-resistant K562G cells by using MTS assay and western blotting, and BCR-ABL protein was reduced. CHX chase assay revealed that HHT induced degradation of the BCR-ABL protein, which could be reversed by autophagy lysosome inhibitors Baf-A1 and CQ. Next, HHT treatment confirmed the induction of autophagy in K562G cells, and silencing the key autophagic proteins ATG5 and Beclin-1 inhibited the degradation of the BCR-ABL protein and cytotoxicity. In addition, autophagic receptor p62/SQSTM1(p62) participated during the autophagic degradation of BCR-ABL induced by HHT, and this was confirmed by co-immunoprecipitation, in which HHT enhanced the ubiquitination of the BCR-ABL protein and promoted its binding to p62. In conclusion, HHT induced p62-mediated autophagy in imatinib-resistant CML K562G cells, thus promoting autophagic degradation of the BCR-ABL protein and providing a novel strategy for the treatment of TKI-resistant CML.
Collapse
Affiliation(s)
- Su Li
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhilei Bo
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ying Jiang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chun Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
26
|
Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR-ABL Independent Mechanisms of Resistance in Chronic Myeloid Leukemia. Front Oncol 2019; 9:939. [PMID: 31612105 PMCID: PMC6769066 DOI: 10.3389/fonc.2019.00939] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Not all chronic myeloid leukemia (CML) patients are cured with tyrosine kinase inhibitors (TKIs), and a proportion of them develop resistance. Recently, continuous BCR-ABL gene expression has been found in resistant cells with undetectable BCR-ABL protein expression, indicating that resistance may occur through kinase independent mechanisms, mainly due to the persistence of leukemia stem cells (LSCs). LSCs reside in the bone marrow niche in a quiescent state, and are characterized by a high heterogeneity in genetic, epigenetic, and transcriptional mechanisms. New approaches based on single cell genomics have offered the opportunity to identify distinct subpopulations of LSCs at diagnosis and during treatment. In the one hand, TKIs are not able to efficiently kill CML-LSCs, but they may be responsible for the modification of some LSCs characteristics, thus contributing to heterogeneity within the tumor. In the other hand, the bone marrow niche is responsible for the interactions between surrounding stromal cells and LSCs, resulting in the generation of specific signals which could favor LSCs cell cycle arrest and allow them to persist during treatment with TKIs. Additionally, LSCs may themselves alter the niche by expressing various costimulatory molecules and secreting suppressive cytokines, able to target metabolic pathways, create an anti-apoptotic environment, and alter immune system functions. Accordingly, the production of an immunosuppressant milieu may facilitate tumor escape from immune surveillance and induce chemo-resistance. In this review we will focus on BCR-ABL-independent mechanisms, analyzing especially those with a potential clinical impact in the management of CML patients.
Collapse
Affiliation(s)
- Federica Loscocco
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L. and A. Seràgnoli, University of Bologna, Bologna, Italy
| | - Alessandro Isidori
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| |
Collapse
|
27
|
Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 Inhibitors in Hematological Malignancies. Anticancer Agents Med Chem 2019; 19:2036-2046. [PMID: 31490767 DOI: 10.2174/1871520619666190906160848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
The JAK-STAT pathway is an important physiologic regulator of different cellular functions including proliferation, apoptosis, differentiation, and immunological responses. Out of six different STAT proteins, STAT5 plays its main role in hematopoiesis and constitutive STAT5 activation seems to be a key event in the pathogenesis of several hematological malignancies. This has led many researchers to develop compounds capable of inhibiting STAT5 activation or interfering with its functions. Several anti-STAT5 molecules have shown potent STAT5 inhibitory activity in vitro. However, compared to the large amount of clinical studies with JAK inhibitors that are currently widely used in the clinics to treat myeloproliferative disorders, the clinical trials with STAT5 inhibitors are very limited. At present, a few STAT5 inhibitors are in phase I or II clinical trials for the treatment of leukemias and graft vs host disease. These studies seem to indicate that such compounds could be well tolerated and useful in reducing the occurrence of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Of interest, STAT5 seems to play an important role in the regulation of hematopoietic stem cell self-renewal suggesting that combination therapies including STAT5 inhibitors can erode the cancer stem cell pool and possibly open the way for the complete cancer eradication. In this review, we discuss the implication of STAT5 in hematological malignancies and the results obtained with the novel STAT5 inhibitors.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Meli
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
28
|
|
29
|
Zhang H, Han D, Lv T, Liu K, Yang Y, Xu X, Chen Y. Novel peptide myristoly-CM4 induces selective cytotoxicity in leukemia K562/MDR and Jurkat cells by necrosis and/or apoptosis pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2153-2167. [PMID: 31308628 PMCID: PMC6612960 DOI: 10.2147/dddt.s207224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023]
Abstract
Purpose: There is an urgent need for the development of novel, effective, and less toxic drugs to treat leukemia. Antimicrobial peptides (AMPs) have received much more attention as alternative chemotherapeutic agents. This study aimed to examined the cytotoxicity of a novel AMP myristoly-CM4 against chronic myeloid leukemia cells (K562/MDR) and acute lymphocytic leukemia cells (Jurkat), and further investigated its selectivity to clarify the cytotoxic mechanism. Materials and methods: In this study, the cytotoxicity and selectivity of myristoly-CM4 against K562/MDR and Jurkat cells were assessed in vitro, and the anticancer mechanism responsible for its cytotoxicity and selectivity was further investigated. Results: Myristoly-CM4 was cytotoxic to these leukemia cell lines (IC50 2–4 μM) and was less cytotoxic to normal cells (HEK-293, L02 cells, peripheral blood mononuclear cells, and erythrocytes). Myristoyl-CM4 had stronger affinity to K562/MDR and Jurkat cells than to normal cells, while the contents of phosphatidylserine and sialic acids on the cell surfaces of K562/MDR and Jurkat cells were significantly higher than that of HEK293 cells. The myristoyl group effectively mediated the internalization of myristoyl-CM4 to leukemia cells. After internalization, myristoyl-CM4 could target mitochondria and affected mitochondrial function, including disruption of Δψm, increasing the accumulation of ROS, increasing the Bax/Bcl-2 ratio, activating caspase 9 and 3, and PARP to induce mitochondria-dependent apoptosis in both K562/MDR and Jurkat cells. Myristoyl-CM4 also induced K562/MDR cell necrosis by directive membrane disruption, and significantly decreased the level of P-glycoprotein in K562/MDR cells. Conclusion: These results suggested that myristoyl-CM4 showed selective cytotoxicity to leukemia K562/MDR and Jurkat cells by apoptosis and/or necrosis pathway. Myristoyl-CM4, thus, appears to be a promising candidate for leukemia treatment, including multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Dongju Han
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tongtong Lv
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Kehang Liu
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yunqing Yang
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xixi Xu
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yuqing Chen
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Meenakshi Sundaram DN, Jiang X, Brandwein JM, Valencia-Serna J, Remant KC, Uludağ H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov Today 2019; 24:1355-1369. [PMID: 31102734 DOI: 10.1016/j.drudis.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia cells are armed with several resistance mechanisms that can make current drugs ineffective. A better understanding of resistance mechanisms is yielding new approaches to management of the disease. Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm the hallmark of which, the breakpoint cluster region-Abelson (BCR-ABL) oncogene, has been the target of tyrosine kinase inhibitors (TKIs), which have significantly improved the survival of patients with CML. However, because of an increase in TKI resistance, it is becoming imperative to identify resistance mechanisms so that drug therapies can be better prescribed and new agents developed. In this review, we discuss the various BCR-ABL-dependent and -independent mechanisms of resistance observed in CML, and the range of therapeutic solutions available to overcome such resistance and to ultimately improve the survival of patients with CML.
Collapse
Affiliation(s)
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Juliana Valencia-Serna
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - K C Remant
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
31
|
Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J Control Release 2019; 296:114-139. [DOI: 10.1016/j.jconrel.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
32
|
Pavlovsky C, Chan O, Talati C, Pinilla-Ibarz J. Ponatinib in the treatment of chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia. Future Oncol 2018; 15:257-269. [PMID: 30251548 DOI: 10.2217/fon-2018-0371] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Philadelphia chromosome, reciprocal translocation between chromosome 9 and 22, leading to a constitutively active fusion protein BCR-ABL1 is the common feature among Philadelphia positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML). The discovery of tyrosine kinase inhibitors (TKIs) has led to significant improvement in the treatment of CML and Ph+ ALL. Ponatinib is a third-generation TKI that is currently approved as per label when no other TKIs are indicated for the treatment of patients with CML and Ph+ ALL after failing treatment with second-generation TKIs or if presence of T315I mutation is discovered. This review summarizes the ponatinib development, approved indications as well as ongoing clinical studies in CML and Ph+ ALL.
Collapse
Affiliation(s)
- Carolina Pavlovsky
- Department of Hematology Oncology, Fundaleu Hospitalization & Clinical Research Center, Buenos Aires, Argentina
| | - Onyee Chan
- Department of Hematology Oncology, University of South Florida/Moffitt Cancer Center, Tampa, FL, USA
| | - Chetasi Talati
- Department of Hematology Oncology, University of South Florida/Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
33
|
Sandt C, Feraud O, Bonnet ML, Desterke C, Khedhir R, Flamant S, Bailey CG, Rasko JEJ, Dumas P, Bennaceur-Griscelli A, Turhan AG. Direct and rapid identification of T315I-Mutated BCR-ABL expressing leukemic cells using infrared microspectroscopy. Biochem Biophys Res Commun 2018; 503:1861-1867. [PMID: 30057314 DOI: 10.1016/j.bbrc.2018.07.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
Abstract
Despite the major success obtained by the use of tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), resistances to therapies occur due to mutations in the ABL-kinase domain of the BCR-ABL oncogene. Amongst these mutations, the "gatekeeper" T315I is a major concern as it renders leukemic cells resistant to all licenced TKI except Ponatinib. We report here that Fourier transform infrared (FTIR) microspectroscopy is a powerful methodology allowing rapid and direct identification of a spectral signature in single cells expressing T315I-mutated BCR-ABL. The specificity of this spectral signature is confirmed using a Dox-inducible T315I-mutated BCR-ABL-expressing human UT-7 cells as well as in murine embryonic stem cells. Transcriptome analysis of UT-7 cells expressing BCR-ABL as compared to BCR-ABL T315I clearly identified a molecular signature which could be at the origin of the generation of metabolic changes giving rise to the spectral signature. Thus, these results suggest that this new methodology can be applied to the identification of leukemic cells harbouring the T315I mutation at the single cell level and could represent a novel early detection tool of mutant clones. It could also be applied to drug screening strategies to target T315I-mutated leukemic cells.
Collapse
MESH Headings
- Animals
- Cell Line
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mutation
- Spectroscopy, Fourier Transform Infrared
Collapse
Affiliation(s)
| | | | | | | | | | | | - Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Locked Bag No 6, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, 2006, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Locked Bag No 6, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, 2006, NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2052, NSW, Australia
| | - Paul Dumas
- SOLEIL Synchrotron, Saint Aubin, 91192, Gif sur Yvette, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR_S_935, Campus CNRS, Villejuif, France; Department of Hematology, Paris Sud Hematology Institute, AP-HP Hôpital Paul Brousse, Villejuif, France; INGESTEM National Pluripotent Stem Cell Infrastructure, University Paris Sud 11, Villejuif, France
| | - Ali G Turhan
- INSERM UMR_S_935, Campus CNRS, Villejuif, France; Department of Hematology, Paris Sud Hematology Institute, AP-HP Hôpital Paul Brousse, Villejuif, France; INGESTEM National Pluripotent Stem Cell Infrastructure, University Paris Sud 11, Villejuif, France.
| |
Collapse
|