1
|
Salavati M, Arabshomali A, Nouranian S, Shariat-Madar Z. Overview of Venous Thromboembolism and Emerging Therapeutic Technologies Based on Nanocarriers-Mediated Drug Delivery Systems. Molecules 2024; 29:4883. [PMID: 39459251 PMCID: PMC11510185 DOI: 10.3390/molecules29204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Venous thromboembolism (VTE) is a serious health condition and represents an important cause of morbidity and, in some cases, mortality due to the lack of effective treatment options. According to the Centers for Disease Control and Prevention, 3 out of 10 people with VTE will have recurrence of a clotting event within ten years, presenting a significant unmet medical need. For some VTE patients, symptoms can last longer and have a higher than average risk of serious complications; in contrast, others may experience complications arising from insufficient therapies. People with VTE are initially treated with anticoagulants to prevent conditions such as stroke and to reduce the recurrence of VTE. However, thrombolytic therapy is used for people with pulmonary embolism (PE) experiencing low blood pressure or in severe cases of DVT. New drugs are under development, with the aim to ensure they are safe and effective, and may provide an additional option for the treatment of VTE. In this review, we summarize all ongoing trials evaluating anticoagulant interventions in VTE listed in clinicaltrials.gov, clarifying their underlying mechanisms and evaluating whether they prevent the progression of DVT to PE and recurrence of thrombosis. Moreover, this review summarizes the available evidence that supports the use of antiplatelet therapy for VTE. Since thrombolytic agents would cause off-target effects, targeted drug delivery platforms are used to develop various therapeutics for thrombotic diseases. We discuss the recent advances achieved with thrombus-targeting nanocarriers as well as the major challenges associated with the use of nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Masoud Salavati
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Arman Arabshomali
- Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
4
|
Hota S, Kumar M. ErpY-like Protein Interaction with Host Thrombin and Fibrinogen Intervenes the Plasma Coagulation through Extrinsic and Intrinsic Pathways. ACS Infect Dis 2024; 10:3256-3272. [PMID: 39231002 DOI: 10.1021/acsinfecdis.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The survival and proliferation of pathogenic Leptospira within a host are complex phenomena that require careful consideration. The ErpY-like lipoprotein, found on the outer membrane surface of Leptospira, plays a crucial role in enhancing the bacterium's pathogenicity. The rErpY-like protein, in its recombinant form, contributes significantly to spirochete virulence by interacting with various host factors, including host complement regulators. This interaction facilitates the bacterium's evasion of the host complement system, thereby augmenting its overall pathogenicity. The rErpY-like protein exhibits a robust binding affinity to soluble fibrinogen, a vital component of the host coagulation system. In this study, we demonstrate that the rErpY-like protein intervenes in the clotting process of the platelet-poor citrated plasma of bovines and humans in a concentration-dependent manner. It significantly reduces clot density, alters the viscoelastic properties of the clot, and diminishes the average clotting rate in plasma. Furthermore, the ErpY-like protein inhibits thrombin-catalyzed fibrin formation in a dose-dependent manner and exhibits saturable binding to thrombin, suggesting its significant role in leptospiral infection. These findings provide compelling evidence for the anticoagulant effect of the ErpY-like lipoprotein and its significant role in leptospiral infection.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Carré J, Kerforne T, Hauet T, Macchi L. Tissue Injury Protection: The Other Face of Anticoagulant Treatments in the Context of Ischemia and Reperfusion Injury with a Focus on Transplantation. Int J Mol Sci 2023; 24:17491. [PMID: 38139319 PMCID: PMC10743711 DOI: 10.3390/ijms242417491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Organ transplantation has enhanced the length and quality of life of patients suffering from life-threatening organ failure. Donors deceased after brain death (DBDDs) have been a primary source of organs for transplantation for a long time, but the need to find new strategies to face organ shortages has led to the broadening of the criteria for selecting DBDDs and advancing utilization of donors deceased after circulatory death. These new sources of organs come with an elevated risk of procuring organs of suboptimal quality. Whatever the source of organs for transplant, one constant issue is the occurrence of ischemia-reperfusion (IR) injury. The latter results from the variation of oxygen supply during the sequence of ischemia and reperfusion, from organ procurement to the restoration of blood circulation, triggering many deleterious interdependent processes involving biochemical, immune, vascular and coagulation systems. In this review, we focus on the roles of thrombo-inflammation and coagulation as part of IR injury, and we give an overview of the state of the art and perspectives on anticoagulant therapies in the field of transplantation, discussing benefits and risks and proposing a strategic guide to their use during transplantation procedures.
Collapse
Affiliation(s)
- Julie Carré
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
| | - Thomas Kerforne
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- Service D’Anesthésie-Réanimation et Médecine Péri-Opératoire, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| | - Thierry Hauet
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
- Service de Biochimie, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
| | - Laurent Macchi
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| |
Collapse
|
6
|
Pagán-Escribano J, Corral J, Miñano A, Padilla J, Roldán V, Hernández-Vidal MJ, Lozano J, de la Morena-Barrio I, Vicente V, Lozano ML, Herranz MT, de la Morena-Barrio ME. Factor XI in Carriers of Antiphospholipid Antibodies: Elevated Levels Associated with Symptomatic Thrombotic Cases, While Low Levels Linked to Asymptomatic Cases. Int J Mol Sci 2023; 24:16270. [PMID: 38003459 PMCID: PMC10670960 DOI: 10.3390/ijms242216270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a thromboinflammatory disorder caused by circulating antiphospholipid autoantibodies (aPL) and characterized by an increased risk of thrombotic events. The pathogenic mechanisms of these antibodies are complex and not fully understood, but disturbances in coagulation and fibrinolysis have been proposed to contribute to the thrombophilic state. This study aims to evaluate the role of an emerging hemostatic molecule, FXI, in the thrombotic risk of patients with aPL. Cross-sectional and observational study of 194 consecutive and unrelated cases with aPL recruited in a single center: 82 asymptomatic (AaPL) and 112 with primary antiphospholipid syndrome (APS). Clinical and epidemiological variables were collected. The profile of aPL was determined. Plasma FXI was evaluated by Western blotting and two coagulation assays (FXI:C). In cases with low FXI, molecular analysis of the F11 gene was performed. FXI:C levels were significantly higher in patients with APS than in patients with AaPL (122.8 ± 33.4 vs. 104.5 ± 27.5; p < 0.001). Multivariate analysis showed a significant association between symptomatic patients with aPL (APS) and high FXI (>150%) (OR = 11.57; 95% CI: 1.47-90.96; p = 0.020). In contrast, low FXI (<70%), mostly caused by inhibitors, was less frequent in the group of patients with APS compared to AaPL (OR = 0.17; 95%CI: 0.36-0.86; p = 0.032). This study suggests that FXI levels may play a causal role in the prothrombotic state induced by aPLs and holds the promise of complementary treatments in APS patients by targeting FXI.
Collapse
Affiliation(s)
- Javier Pagán-Escribano
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - Javier Corral
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - Antonia Miñano
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - José Padilla
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - Vanessa Roldán
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Julia Hernández-Vidal
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - Jesús Lozano
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | | | - Vicente Vicente
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Luisa Lozano
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Teresa Herranz
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| |
Collapse
|
7
|
Drop J, Letunica N, Van Den Helm S, Heleen van Ommen C, Wildschut E, de Hoog M, van Rosmalen J, Barton R, Yaw HP, Newall F, Horton SB, Chiletti R, Johansen A, Best D, McKittrick J, Butt W, d’Udekem Y, MacLaren G, Linden MD, Ignjatovic V, Attard C, Monagle P. Factors XI and XII in extracorporeal membrane oxygenation: longitudinal profile in children. Res Pract Thromb Haemost 2023; 7:102252. [PMID: 38193071 PMCID: PMC10772870 DOI: 10.1016/j.rpth.2023.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024] Open
Abstract
Background Extracorporeal membrane oxygenation (ECMO) is used in children with cardiopulmonary failure. While the majority of ECMO centers use unfractionated heparin, other anticoagulants, including factor XI and factor XII inhibitors are emerging, which may prove suitable for ECMO patients. However, before these anticoagulants can be applied in these patients, baseline data of FXI and FXII changes need to be acquired. Objectives This study aimed to describe the longitudinal profile of FXI and FXII antigenic levels and function before, during, and after ECMO in children. Methods This is a prospective observational study in neonatal and pediatric patients with ECMO (<18 years). All patients with venoarterial ECMO and with sufficient plasma volume collected before ECMO, on day 1 and day 3, and 24 hours postdecannulation were included. Antigenic levels and functional activity of FXI and FXII were determined in these samples. Longitudinal profiles of these values were created using a linear mixed model. Results Sixteen patients were included in this study. Mean FXI and FXII antigenic levels (U/mL) changed from 7.9 and 53.2 before ECMO to 6.0 and 34.5 on day 3 and they recovered to 8.8 and 39.4, respectively, after stopping ECMO. Function (%) of FXI and FXII decreased from 59.1 and 59.0 to 49.0 and 50.7 on day 3 and recovered to 66.0 and 54.4, respectively. Conclusion This study provides the first insights into changes of the contact pathway in children undergoing ECMO. FXI and FXII antigen and function change during ECMO. Results from this study can be used as starting point for future contact pathway anticoagulant studies in pediatric patients with ECMO.
Collapse
Affiliation(s)
- Joppe Drop
- Department of Paediatrics, Division of Paediatric Hematology, Erasmus Medical Centre—Sophia Children’s Hospital, Rotterdam, South Holland, The Netherlands
- Department of Paediatrics, Division of Paediatric Intensive Care and Paediatric Surgery, Erasmus Medical Centre – Sophia Children’s Hospital, Rotterdam, South Holland, The Netherlands
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Natasha Letunica
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Suelyn Van Den Helm
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - C. Heleen van Ommen
- Department of Paediatrics, Division of Paediatric Hematology, Erasmus Medical Centre—Sophia Children’s Hospital, Rotterdam, South Holland, The Netherlands
| | - Enno Wildschut
- Department of Paediatrics, Division of Paediatric Intensive Care and Paediatric Surgery, Erasmus Medical Centre – Sophia Children’s Hospital, Rotterdam, South Holland, The Netherlands
| | - Matthijs de Hoog
- Department of Paediatrics, Division of Paediatric Intensive Care and Paediatric Surgery, Erasmus Medical Centre – Sophia Children’s Hospital, Rotterdam, South Holland, The Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus University Medical Center, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, South Holland, The Netherlands
| | - Rebecca Barton
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Hui Ping Yaw
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Fiona Newall
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Stephen B. Horton
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Cardiac Surgery, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Roberto Chiletti
- Department of Intensive Care, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Paediatric Intensive Care Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy Johansen
- Department of Intensive Care, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Paediatric Intensive Care Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Derek Best
- Department of Intensive Care, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Paediatric Intensive Care Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Joanne McKittrick
- Department of Intensive Care, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Warwick Butt
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Intensive Care, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Paediatric Intensive Care Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yves d’Udekem
- Department of Cardiac Surgery, Children’s National Heart Institute, Washington DC, USA
| | - Graeme MacLaren
- Cardiothoracic Intensive Care Unit, National University Health System, Singapore
| | - Matthew D. Linden
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, St Petersburg, Florida, USA
- Department of Paediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chantal Attard
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, The Royal Children’s Hospital, Melbourne, Victoria, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
8
|
Lova A, Pagán J, de la Morena G, Vázquez DJ, Cerezo-Manchado JJ, Bravo-Pérez C, Miñano A, Tomás A, Vicente V, Lozano ML, Corral J, de la Morena-Barrio ME. Congenital factor XI deficiency and risk of heart failure in humans. J Thromb Haemost 2023; 21:2626-2629. [PMID: 37336435 DOI: 10.1016/j.jtha.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Alejandro Lova
- Unidad de Cardiología, Hospital Virgen del Castillo, Yecla, Spain
| | - Javier Pagán
- Servicio de Medicina Interna, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | | | | | | | - Carlos Bravo-Pérez
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Ana Tomás
- Unidad de Cardiología, Clínica Nueva Seda, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - María Luisa Lozano
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología, Hospital General Universitario Morales Messeguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
9
|
Ranc A, Bru S, Mendez S, Giansily-Blaizot M, Nicoud F, Méndez Rojano R. Critical evaluation of kinetic schemes for coagulation. PLoS One 2023; 18:e0290531. [PMID: 37639392 PMCID: PMC10461854 DOI: 10.1371/journal.pone.0290531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Two well-established numerical representations of the coagulation cascade either initiated by the intrinsic system (Chatterjee et al., PLOS Computational Biology 2010) or the extrinsic system (Butenas et al., Journal of Biological Chemistry, 2004) were compared with thrombin generation assays under realistic pathological conditions. Biochemical modifications such as the omission of reactions not relevant to the case studied, the modification of reactions related to factor XI activation and auto-activation, the adaptation of initial conditions to the thrombin assay system, and the adjustment of some of the model parameters were necessary to align in vitro and in silico data. The modified models are able to reproduce thrombin generation for a range of factor XII, XI, and VIII deficiencies, with the coagulation cascade initiated either extrinsically or intrinsically. The results emphasize that when existing models are extrapolated to experimental parameters for which they have not been calibrated, careful adjustments are required.
Collapse
Affiliation(s)
- Alexandre Ranc
- Department of Haematology Biology, CHU, Univ Montpellier, Montpellier, France
| | - Salome Bru
- Polytech, Univ Montpellier, Montpellier, France
| | - Simon Mendez
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
10
|
de la Morena-Barrio B, Palomo Á, Padilla J, Martín-Fernández L, Rojo-Carrillo JJ, Cifuentes R, Bravo-Pérez C, Garrido-Rodríguez P, Miñano A, Rubio AM, Pagán J, Llamas M, Vicente V, Vidal F, Lozano ML, Corral J, de la Morena-Barrio ME. Impact of genetic structural variants in factor XI deficiency: identification, accurate characterization, and inferred mechanism by long-read sequencing. J Thromb Haemost 2023; 21:1779-1788. [PMID: 36940803 DOI: 10.1016/j.jtha.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Congenital factor XI (FXI) deficiency is a probably underestimated coagulopathy that confers antithrombotic protection. Characterization of genetic defects in F11 is mainly focused on the identification of single-nucleotide variants and small insertion/deletions because they represent up to 99% of the alterations accounting for factor deficiency, with only 3 gross gene defects of structural variants (SVs) having been described. OBJECTIVES To identify and characterize the SVs affecting F11. METHODS The study was performed in 93 unrelated subjects with FXI deficiency recruited in Spanish hospitals over a period of 25 years (1997-2022). F11 was analyzed by next-generation sequencing, multiplex ligand probe amplification, and long-read sequencing. RESULTS Our study identified 30 different genetic variants. Interestingly, we found 3 SVs, all heterozygous: a complex duplication affecting exons 8 and 9, a tandem duplication of exon 14, and a large deletion affecting the whole gene. Nucleotide resolution obtained by long-read sequencing revealed Alu repetitive elements involved in all breakpoints. The large deletion was probably generated de novo in the paternal allele during gametogenesis, and despite affecting 30 additional genes, no syndromic features were described. CONCLUSION SVs may account for a high proportion of F11 genetic defects implicated in the molecular pathology of congenital FXI deficiency. These SVs, likely caused by a nonallelic homologous recombination involving repetitive elements, are heterogeneous in both type and length and may be de novo. These data support the inclusion of methods to detect SVs in this disorder, with long-read-based methods being the most appropriate because they detect all SVs and achieve adequate nucleotide resolution.
Collapse
Affiliation(s)
- Belén de la Morena-Barrio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Ángeles Palomo
- Servicio de Hematología y Hemoterapia del centro Materno-Infantil del Hospital Regional Universitario Carlos de Haya, Málaga, Spain
| | - José Padilla
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Laura Martín-Fernández
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain; Medicina Transfusional. Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan José Rojo-Carrillo
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Rosa Cifuentes
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Carlos Bravo-Pérez
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Pedro Garrido-Rodríguez
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Ana María Rubio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Javier Pagán
- Servicio de Medicina Interna, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - María Llamas
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Francisco Vidal
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain; Medicina Transfusional. Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa Lozano
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain.
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain.
| |
Collapse
|
11
|
Shamanaev A, Dickeson SK, Ivanov I, Litvak M, Sun MF, Kumar S, Cheng Q, Srivastava P, He TZ, Gailani D. Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity. Front Physiol 2023; 14:1146834. [PMID: 37288434 PMCID: PMC10242079 DOI: 10.3389/fphys.2023.1146834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Yin Q, Zhang X, Liao S, Huang X, Wan CC, Wang Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154880. [PMID: 37267694 DOI: 10.1016/j.phymed.2023.154880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Anticoagulants are the main drugs used for the prevention and treatment of thrombosis. Currently, anticoagulant drugs are primarily multitarget heparin drugs, single-target FXa inhibitors and FIIa inhibitors. In addition, some traditional Chinese drugs also have anticoagulant effects, but they are not the main direction of treatment at present. But the anticoagulant drugs mentioned above, all have a common side effect is bleeding. Many other anticoagulation targets are under investigation. With further exploration of coagulation mechanism, how to further determine new anticoagulant targets and how to make traditional Chinese medicine play anticoagulant role have become a new field of exploration. PURPOSE The purpose of the study was to summarize the recent research progress on coagulation mechanisms, new anticoagulant targets and traditional Chinese medicine. METHODS A comprehensive literature search was conducted using four electronic databases, including PubMed, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the study to 28 Feb 2023. Key words used in the literature search were "anticoagulation", "anticoagulant targets", "new targets", "coagulation mechanisms", "potential anticoagulant", "herb medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "blood coagulation factor", keywords are linked with AND/OR. Recent findings on coagulation mechanisms, potential anticoagulant targets and traditional Chinese medicine were studied. RESULTS The active components extracted from the Chinese medicinal herbs, Salvia miltiorrhiza, Chuanxiong rhizoma, safflower and Panax notoginseng have obvious anticoagulant effects and can be used as potential anticoagulant drugs, but the risk of bleeding is unclear. TF/FVIIa, FVIII, FIX, FXI, FXII, and FXIII have all been evaluated as targets in animal studies or clinical trials. FIX and FXI are the most studied anticoagulant targets, but FXI inhibitors have shown stronger advantages. CONCLUSION This review of potential anticoagulants provides a comprehensive resource. Literature analysis suggests that FXI inhibitors can be used as potential anticoagulant candidates. In addition, we should not ignore the anticoagulant effect of traditional Chinese medicine, and look forward to more research and the emergence of new drugs.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Suqing Liao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-Harvest Technology and Nondestructive Testing of Fruits & Vegetables, Nanchang 330045, PR. China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China.
| |
Collapse
|
13
|
Santostasi G, Denas G, Pengo V. New pharmacotherapeutic options for oral anticoagulant treatment in atrial fibrillation patients aged 65 and older: factor XIa inhibitors and beyond. Expert Opin Pharmacother 2023; 24:1335-1347. [PMID: 37243619 DOI: 10.1080/14656566.2023.2219391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Although much progress has been made using anticoagulation for stroke prevention in patients with non-valvular atrial fibrillation, bleeding is still a major concern. AREAS COVERED This article reviews current pharmacotherapeutic options in this setting. Particular emphasis is placed on the ability of the new molecules to minimize the bleeding risk in elderly patients. A systematic search of PubMed, Web of Science, and the Cochrane Library up to March 2023 was carried out. EXPERT OPINION Contact phase of coagulation is a possible new target for anticoagulant therapy. Indeed, congenital or acquired deficiency of contact phase factors is associated with reduced thrombotic burden and limited risk of spontaneous bleeding. These new drugs seem particularly suitable for stroke prevention in elderly patients with non-valvular atrial fibrillation in whom the hemorrhagic risk is high. Most of anti Factor XI (FXI) drugs are for parenteral use only. A group of small molecules are for oral use and therefore are candidates to substitute direct oral anticoagulants (DOACs) for stroke prevention in elderly patients with atrial fibrillation. Doubts remain on the possibility of impaired hemostasis. Indeed, a fine calibration of inhibition of contact phase factors is crucial for an effective and safe treatment.
Collapse
Affiliation(s)
| | - Gentian Denas
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
| | - Vittorio Pengo
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
14
|
La CC, Smith SA, Vappala S, Adili R, Luke CE, Abbina S, Luo HD, Chafeeva I, Drayton M, Creagh LA, de Guadalupe Jaraquemada-Peláez M, Rhoads N, Kalathottukaren MT, Henke PK, Straus SK, Du C, Conway EM, Holinstat M, Haynes CA, Morrissey JH, Kizhakkedathu JN. Smart thrombosis inhibitors without bleeding side effects via charge tunable ligand design. Nat Commun 2023; 14:2177. [PMID: 37100783 PMCID: PMC10133246 DOI: 10.1038/s41467-023-37709-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.
Collapse
Affiliation(s)
- Chanel C La
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sreeparna Vappala
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Bloodworks Research Institute, 1551 Eastlake Avenue E.; Ste. 100, Seattle, WA, 98102, USA
| | - Catherine E Luke
- Department of Surgery, Section of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Irina Chafeeva
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Drayton
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Louise A Creagh
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Nicole Rhoads
- Bloodworks Research Institute, 1551 Eastlake Avenue E.; Ste.100, Seattle, WA, 98102, USA
| | - Manu Thomas Kalathottukaren
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter K Henke
- Department of Surgery, Section of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Haynes
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Bentounes NK, Melicine S, Martin AC, Smadja DM, Gendron N. Development of new anticoagulant in 2023: Prime time for anti-factor XI and XIa inhibitors. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:69-80. [PMID: 37422330 DOI: 10.1016/j.jdmv.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 07/10/2023]
Abstract
Thrombosis remains one of the leading causes of death in the world. The history of anticoagulation has evolved considerably from non-specific drugs (i.e., heparins and vitamin K antagonists, VKA) to agents that directly target specific coagulation factors (i.e., argatroban, fondaparinux and direct oral anticoagulants, DOAC). Since the last decade, DOAC are widely used in clinical practice because of their ease to use with favorable pharmacological profile and not requiring monitoring, particularly for venous thromboembolism treatment and prevention and stroke prevention in atrial fibrillation. However, despite having a better safety profile than VKA, their bleeding risk is not negligible. Therefore, research is underway to develop new anticoagulant therapies with a better safety profile. One of these news approaches to reduce the risk of bleeding is to target the coagulation in the intrinsic pathway, in particular the contact activation, with the ultimate goal of preventing thrombosis without impairing hemostasis. Based on epidemiological data with patients with inherited factor XI (FXI) deficiency and preclinical studies, FXI emerged as the most promising candidate target separating hemostasis from thrombosis. This review summaries the role of FXI and FXIa in hemostasis, provides evidence of initial success with FXI pathway inhibitors in clinical trials (such as IONIS-FXIRx, fesomersen, osocimab, abelacimab, milvexian, asundexian or xisomab 3G3) and highlights the opportunities and challenges for this next generation of anticoagulants.
Collapse
Affiliation(s)
- Nûn K Bentounes
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - Sophie Melicine
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - Anne Céline Martin
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Cardiology Department, Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France
| | - David M Smadja
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France; INNOVTE, F-CRIN, Saint-Étienne, France
| | - Nicolas Gendron
- University Paris Cité, Innovative Therapies in Hemostasis, Inserm, 75006 Paris, France; Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance publique-Hôpitaux de Paris. Centre-Université Paris Cité (AP-HP.CUP), 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
16
|
Al-Horani RA. 3-( 1H-Imidazol-2-Yl)-2,3,8,8a-Tetrahydroindolizin-5( 1H)-One Derivatives are Useful as Factor Xia Inhibitors and Their Preparation. Cardiovasc Hematol Agents Med Chem 2023; 21:240-242. [PMID: 36654472 PMCID: PMC10473546 DOI: 10.2174/1871525721666230118140531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA 70125 United, States
| |
Collapse
|
17
|
Allosteric modulation of exosite 1 attenuates polyphosphate-catalyzed activation of factor XI by thrombin. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:83-93. [PMID: 36695400 DOI: 10.1016/j.jtha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Polyphosphate (polyP) promotes feedback activation of factor (F) XI by thrombin by serving as a template. The contribution of thrombin's exosites to these interactions is unclear. OBJECTIVES To determine the contribution of thrombin exosites 1 and 2 to polyP-induced potentiation of FXI activation by thrombin. METHODS The affinities of α-thrombin; K109E/110E-thrombin, an exosite 1 variant, or R93E-thrombin, an exosite 2 variant; FXI; and FXIa for polyP-70 were quantified using surface plasmon resonance in the absence or presence of exosite ligands. FXI was activated with α-thrombin or thrombin variants in the absence or presence of polyP-70 and exosite ligands. RESULTS α-Thrombin, K109/110E-thrombin, FXI, and FXIa bound polyP-70, whereas R93E-thrombin exhibited minimal binding. Exosite 1 and exosite 2 ligands attenuated thrombin binding to polyP-70. PolyP-70 accelerated the rate of FXI activation by α-thrombin and K109E/110E-thrombin but not R93E-thrombin up to 1500-fold in a bell-shaped, concentration-responsive manner. Exosite 1 and exosite 2 ligands had no impact on FXI activation by thrombin in the absence of polyP-70; however, in its presence, they attenuated activation by 40% to 65%. CONCLUSION PolyP-70 binds FXI and thrombin and promotes their interaction. Exosite 2 ligands attenuate activation because thrombin binds polyP-70 via exosite 2. Attenuation of FXI activation by exosite 1 ligands likely reflects allosteric modulation of exosite 2 and/or the active site of thrombin because exosite 1 is not directly involved in FXI activation. Therefore, allosteric modulation of thrombin's exosites may represent a novel strategy for downregulating FXI activation.
Collapse
|
18
|
Barriuso I, Worner F, Vilahur G. Novel Antithrombotic Agents in Ischemic Cardiovascular Disease: Progress in the Search for the Optimal Treatment. J Cardiovasc Dev Dis 2022; 9:397. [PMID: 36421932 PMCID: PMC9699470 DOI: 10.3390/jcdd9110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Ischemic cardiovascular diseases have a high incidence and high mortality worldwide. Therapeutic advances in the last decades have reduced cardiovascular mortality, with antithrombotic therapy being the cornerstone of medical treatment. Yet, currently used antithrombotic agents carry an inherent risk of bleeding associated with adverse cardiovascular outcomes and mortality. Advances in understanding the pathophysiology of thrombus formation have led to the discovery of new targets and the development of new anticoagulants and antiplatelet agents aimed at preventing thrombus stabilization and growth while preserving hemostasis. In the following review, we will comment on the key limitation of the currently used antithrombotic regimes in ischemic heart disease and ischemic stroke and provide an in-depth and state-of-the-art overview of the emerging anticoagulant and antiplatelet agents in the pipeline with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Ignacio Barriuso
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Worner
- Hospital Universitario Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, 25198 Lleida, Spain
| | - Gemma Vilahur
- Institut de Recerca, Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
- Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares (CiberCV), 28029 Madrid, Spain
| |
Collapse
|
19
|
Moellmer SA, Puy C, McCarty OJT. HK is the apple of FXI's eye. J Thromb Haemost 2022; 20:2485-2487. [PMID: 36271466 PMCID: PMC9589922 DOI: 10.1111/jth.15842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Factor XII (FXII), the precursor of the protease FXIIa, contributes to pathologic processes including angioedema and thrombosis. Here, we review recent work on structure-function relationships for FXII based on studies using recombinant FXII variants. RECENT FINDINGS FXII is a homolog of pro-hepatocyte growth factor activator (Pro-HGFA). We prepared FXII in which domains are replaced by corresponding parts of Pro-HGA, and tested them in FXII activation and activity assays. In solution, FXII and prekallikrein undergo reciprocal activation to FXIIa and kallikrein. The rate of this process is restricted by the FXII fibronectin type-2 and kringle domains. Pro-HGA replacements for these domains accelerate FXII and prekallikrein activation. When FXII and prekallikrein bind to negatively charged surfaces, reciprocal activation is enhanced. The FXII EGF1 domain is required for surface binding. SUMMARY We propose a model in which FXII is normally maintained in a closed conformation resistant to activation by intramolecular interactions involving the fibronectin type-2 and kringle domains. These interactions are disrupted when FXII binds to a surface through EGF1, enhancing FXII activation and prekallikrein activation by FXIIa. These observations have important implications for understanding the contributions of FXII to disease, and for developing therapies to treat thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
21
|
Komorowicz E, Kolev K. Fibrin structure, viscoelasticity and lysis face the interplay of biorelevant polyions. Curr Opin Hematol 2022; 29:244-250. [PMID: 35916559 DOI: 10.1097/moh.0000000000000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the past 5 decades, heparins have been widely used as anticoagulants in the prevention and treatment of thrombosis. Subsequent development of heparin variants of various size and charge facilitated the discovery of their multiple biological actions and nonanticoagulant benefits. Platelet-derived or microbial polyphosphates, as well as DNA released in the course of neutrophil extracellular trap-formation are additional polyanions, which can modulate the development and stability of thrombi associated with cancer or inflammation. In this review, we focus on the size-dependent and electric charge-dependent modulatory effects of the three polyanions of different chemical structure. RECENT FINDINGS The polycationic histones have been recognized as potential biomarkers and therapeutic targets in several diseases related to inflammation and thrombosis. Since combating histones with activated protein C or heparin could cause unwanted bleeding, the quest for nonanticoagulant histone-neutralizing agents is ongoing. Polyanions may neutralize or exaggerate certain histone-mediated effects depending on their electric charge, size and histone effects under investigation. Several prothrombotic effects of polyphosphates and DNA are also size-dependent. SUMMARY The efficiency of future therapeutics targeting prothrombotic polyanions or histones is not a simple matter of electric charge, but may rely on a delicate combination of size, charge and chemical composition.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
22
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
23
|
de la Morena-Barrio ME, Corral J, López-García C, Jiménez-Díaz VA, Miñano A, Juan-Salvadores P, Esteve-Pastor MA, Baz-Alonso JA, Rubio AM, Sarabia-Tirado F, García-Navarro M, García-Lara J, Marín F, Vicente V, Pinar E, Cánovas SJ, de la Morena G. Contact pathway in surgical and transcatheter aortic valve replacement. Front Cardiovasc Med 2022; 9:887664. [PMID: 35935621 PMCID: PMC9354960 DOI: 10.3389/fcvm.2022.887664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aortic valve replacement is the gold standard treatment for severe symptomatic aortic stenosis, but thrombosis of bioprosthetic valves (PVT) remains a concern. Objective To analyze the factors involved in the contact pathway during aortic valve replacement and to assess their impact on the development of thromboembolic complications. Methods The study was conducted in 232 consecutive patients who underwent: transcatheter aortic valve replacement (TAVR, N = 155), and surgical valve replacement (SAVR, N = 77) (MUVITAVI project). Demographic and clinical data, outcomes including a combined end point (CEP) of thrombotic events, and imaging controls were recruited. Samples were collected 24 h before and 48 h after valve replacement. FXII, FXI and (pre)kallikrein were evaluated by Western Blot and specific ELISA with nanobodies. Results The CEP of thrombotic events was reached by 19 patients: 13 patients presented systemic embolic events and 6 patients subclinical PVT. Valve replacement did not cause FXII activation or generation of kallikrein. There was a significant reduction of FXI levels associated with the procedure, which was statistically more pronounced in SAVR than in TAVR. Cases with reductions of FXI below 80% of basal values had a lower incidence of embolic events during the procedure than patients in whom FXI increased above 150%: 2.7 vs. 16.7%; p: 0.04. Conclusion TAVR or SAVR did not significantly activate the contact pathway. A significant reduction of FXI, was observed, particularly in SAVR, associated with lower incidence of thrombotic events. These results encourage evaluating the usefulness and safety of FXI-directed antithrombotic treatments in these patients.
Collapse
Affiliation(s)
- María Eugenia de la Morena-Barrio
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Centro Investigacion Biomédica en red Enferemedades Raras (CIBERER), CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Murcia, Spain
| | - Javier Corral
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Centro Investigacion Biomédica en red Enferemedades Raras (CIBERER), CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Murcia, Spain
- Javier Corral,
| | - Cecilia López-García
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | | | - Antonia Miñano
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Centro Investigacion Biomédica en red Enferemedades Raras (CIBERER), CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Murcia, Spain
| | - Pablo Juan-Salvadores
- Unidad de Investigación Cardiovascular, Servicio de Cardiología, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - María Asunción Esteve-Pastor
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | - José Antonio Baz-Alonso
- Unidad de Investigación Cardiovascular, Servicio de Cardiología, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Ana María Rubio
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Centro Investigacion Biomédica en red Enferemedades Raras (CIBERER), CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Murcia, Spain
| | | | - Miguel García-Navarro
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | - Juan García-Lara
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | - Francisco Marín
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Centro Investigacion Biomédica en red Enferemedades Raras (CIBERER), CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Murcia, Spain
| | - Eduardo Pinar
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
| | - Sergio José Cánovas
- Servicio de Cirugía Cardiovascular, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Gonzalo de la Morena
- Servicio de Cardiología, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Murcia, Spain
- *Correspondence: Gonzalo de la Morena,
| |
Collapse
|
24
|
Poenou G, Dumitru Dumitru T, Lafaie L, Mismetti V, Heestermans M, Bertoletti L. Factor XI Inhibition for the Prevention of Venous Thromboembolism: An Update on Current Evidence and Future perspectives. Vasc Health Risk Manag 2022; 18:359-373. [PMID: 35707632 PMCID: PMC9191224 DOI: 10.2147/vhrm.s331614] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
During the past decade, emergence of direct oral anticoagulants (DOACs) has drastically improved the prevention of thrombosis. However, several unmet needs prevail in the field of thrombosis prevention, even in the DOACs’ era. The use of DOACs is still constrained and the drugs cannot be administered in every clinical scenario, such as an increased anticoagulant-associated bleeding risk, particularly in some specific populations (cancer – notably those with gastrointestinal or genitourinary cancer – and frail patients), the impossibility to be used in certain patients (eg, end-stage kidney failure during hemodialysis, pregnancy and breastfeeding), and their lack of efficacy in certain clinical scenarios (eg, mechanical heart valves, triple-positive antiphospholipid syndrome). Efforts to find a factor that upon antagonization prevents thrombosis but spares haemostasis have resulted in the identification of coagulation factor XI (FXI) as a therapeutic target. After briefly recapitulating the role of factor XI in the balance of haemostasis, we propose a narrative review of the key data published to date with compounds targeting factor XI to prevent thrombosis as well as the main ongoing clinical studies, opening up prospects for improving the care of patients requiring thrombosis prevention.
Collapse
Affiliation(s)
- Geraldine Poenou
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
| | - Teona Dumitru Dumitru
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
- Internal Medicine Department, University Hospital Santa Lucía, Cartagena, Murcia, Spain
- Catholic University San Antonio, Murcia, Spain
| | - Ludovic Lafaie
- Geriatric Department, University Hospital of Saint Etienne, Saint Etienne, France
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
| | - Valentine Mismetti
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- Pneumology Department, University Hospital of Saint Etienne, Saint Etienne, France
| | - Marco Heestermans
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- Auvergne-Rhône-Alpes French Blood Donation Agency, Saint-Etienne, F-42100, France
| | - Laurent Bertoletti
- Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France
- INSERM, UMR1059, Haemostasis and Vascular Dysfunction Team, Jean Monnet University, Saint-Etienne, F-42055, France
- INSERM, CIC-1408, University Hospital of Saint Etienne, Saint Etienne, France
- Correspondence: Laurent Bertoletti, Therapeutic and Vascular Medicine Department, University Hospital of Saint Etienne, Saint Etienne, France, Tel +33477827771, Fax +33477820482, Email
| |
Collapse
|
25
|
Mosconi MG, Paciaroni M, Ageno W. Investigational drugs for ischemic stroke: what's in the clinical development pipeline for acute phase and prevention? Expert Opin Investig Drugs 2022; 31:645-667. [PMID: 35486110 DOI: 10.1080/13543784.2022.2072725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Stroke is a leading cause of disability and mortality and its burden expected to increase. The only approved drug for acute ischemic stroke is the intravenous thrombolytic alteplase. The risk of bleeding complications is one of the reasons for the undertreatment of eligible patients. Numerous drugs are currently being developed to improve safety-efficacy. AREAS COVERED We reviewed literature from January 1st, 2000, to 15th January 2022 for the development and testing of novel drugs with the aim of targeting treatment at prevention of ischemic stroke: PubMed, MEDLINE, Google Scholar, and ClinicalTrial.gov. EXPERT OPINION The pathophysiology of ischemic stroke involves multiple pathways causing cerebral artery obstruction and brain tissue ischemia. Data suggest that tenecteplase is a more promising fibrinolytic agent with a superior efficacy-safety profile, compared to the currently approved alteplase. Current guidelines consider a short-term cycle of mannitol or hypertonic saline to be advisable in patients with space-occupying hemispheric infarction. Regarding primary and secondary prevention, research is primarily focused on identifying mechanisms to improve the safety-efficacy profile using a "hemostasis-sparing" approach. Further evaluation on those agents that have already shown promise for their risk/benefit profiles, would benefit greatly a neurologist's capacity to successfully prevent and treat ischemic stroke patients.
Collapse
Affiliation(s)
- Maria Giulia Mosconi
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Maurizio Paciaroni
- Emergency and vascular medicine Stroke Unit University of Perugia, Perugia, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
26
|
Gailani D. Factor XI as a target for preventing venous thromboembolism. J Thromb Haemost 2022; 20:550-555. [PMID: 35023278 PMCID: PMC9540353 DOI: 10.1111/jth.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023]
Affiliation(s)
- David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Mohammed BM, Cheng Q, Ivanov IS, Gailani D. Murine Models in the Evaluation of Heparan Sulfate-Based Anticoagulants. Methods Mol Biol 2022; 2303:789-805. [PMID: 34626423 PMCID: PMC8552346 DOI: 10.1007/978-1-0716-1398-6_59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evaluating prospective anticoagulant therapies in animal thrombosis and bleeding models are standard pre-clinical approaches. Mice are frequently used for initial evaluations because a variety of models have been developed in this well-characterized species, and mice are relatively inexpensive to maintain. Because mice seem to be resistant to forming "spontaneous" thrombosis, vessel injury is used to induce intravascular clot formation. For the purpose of testing heparin-based drugs, we adapted a well-established model in which thrombus formation in the carotid artery is induced by exposing the vessel to ferric chloride. For studying anticoagulant effects on venous thrombosis, we use a model in which the inferior vena cava is ligated and the size of the resulting clots are measured. The most common adverse effect of anticoagulation therapy is bleeding. We describe a simple tail bleeding time that has been used for many years to study the effects of anticoagulants on hemostasis. We also describe a more reproducible, but more technically challenging, saphenous vein bleeding model that is also used for this purpose.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, MO, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Ivan S Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Salomon O, Gailani D. A proposal for managing bleeding in patients on therapeutic factor XI(a) inhibitors. J Thromb Haemost 2022; 20:32-38. [PMID: 34735741 PMCID: PMC9540351 DOI: 10.1111/jth.15579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Several drugs that reduce functional levels of the plasma protease zymogen factor XI (FXI), or that inhibit its activated form (FXIa), are being evaluated as treatments to prevent thrombosis. Based on the observation that individuals with inherited FXI deficiency have a relatively mild bleeding disorder, it is anticipated that therapeutic FXI(a) inhibitors will have a smaller impact on hemostasis than anticoagulants targeting thrombin or factor Xa. However, even if FXI(a) inhibitors are determined to be safer than currently used anticoagulants, some patients on these drugs will experience abnormal bleeding or require emergent surgery. Strategies for dealing with such situations are required. Treatment with antifibrinolytic agents and low doses of recombinant factor VIIa effectively prevent abnormal bleeding in FXI-deficient patients with alloantibody inhibitors to FXI who undergo surgery. We propose that a similar strategy can be used for patients on therapeutic FXI(a) inhibitors who are bleeding or require invasive procedures.
Collapse
Affiliation(s)
- Ophira Salomon
- Thrombosis Unit Sheba Medical Center, Tel Hashomer, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Anticoagulant therapy in patients with congenital FXI deficiency. Blood Adv 2021; 5:4083-4086. [PMID: 34597376 PMCID: PMC8945614 DOI: 10.1182/bloodadvances.2021005695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Bleeding risk of FXI deficiency on anticoagulation is unknown. We report 15 of 269 FXI-deficient subjects receiving VKA and/or DOACs. No major bleeding was observed for >1000 months of anticoagulation. Drug dose, monitoring and management were unaffected by FXI deficiency.
The bleeding phenotype of factor XI (FXI) deficiency is unpredictable. Bleeding is usually mild and mostly occurs after injury. Although FXI deficiency renders antithrombotic protection, some patients might eventually develop thrombosis or atrial fibrillation, requiring anticoagulant therapy. There is almost no evidence on the bleeding risk in this scenario. Our retrospective study of 269 white FXI-deficient subjects (1995-2021) identified 15 cases requiring anticoagulation. They harbored 8 different F11 variants, mainly in heterozygosis (1 case was homozygote), and had mild to moderate deficiency (FXI:C: 20% to 70%). Two subjects (13.3%) had bleeding history before anticoagulation. Atrial fibrillation was the main indication (12/15; 80%). Fourteen patients started therapy with vitamin K antagonists (VKA), but 4 subjects were on direct oral anticoagulants (DOACs) at the end of follow-up. Over >1000 months of anticoagulation, 2 mild bleeding episodes in 2 patients (13.3%, 95% confidence interval: 3.7% to 37.9%) were recorded. No major/fatal events were reported. “Pre-post” bleeding localization and severity did not change despite treatment. On VKA, drug dosing and management were also standard, unaltered by FXI deficiency. We provide the largest description of anticoagulant use in FXI deficiency, and the first cases receiving DOACs. Although further studies are needed, our observations suggest that moderate FXI deficiency does not interfere with anticoagulant management nor bleeding risk.
Collapse
|
30
|
Kar S, Mottamal M, Al‐Horani RA. Discovery of Benzyl Tetraphosphonate Derivative as Inhibitor of Human Factor Xia. ChemistryOpen 2020; 9:1161-1172. [PMID: 33204588 PMCID: PMC7654249 DOI: 10.1002/open.202000277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The inhibition of factor XIa (FXIa) is a trending paradigm for the development of new generations of anticoagulants without a substantial risk of bleeding. In this report, we present the discovery of a benzyl tetra-phosphonate derivative as a potent and selective inhibitor of human FXIa. Biochemical screening of four phosphonate/phosphate derivatives has led to the identification of the molecule that inhibited human FXIa with an IC50 value of ∼7.4 μM and a submaximal efficacy of ∼68 %. The inhibitor was at least 14-fold more selective to FXIa over thrombin, factor IXa, factor Xa, and factor XIIIa. It also inhibited FXIa-mediated activation of factor IX and prolonged the activated partial thromboplastin time of human plasma. In Michaelis-Menten kinetics experiment, inhibitor 1 reduced the VMAX of FXIa hydrolysis of a chromogenic substrate without significantly affecting its KM suggesting an allosteric mechanism of inhibition. The inhibitor also disrupted the formation of FXIa - antithrombin complex and inhibited thrombin-mediated and factor XIIa-mediated formation of FXIa from its zymogen factor XI. Inhibitor 1 has been proposed to bind to or near the heparin/polyphosphate-binding site in the catalytic domain of FXIa. Overall, inhibitor 1 is the first benzyl tetraphosphonate small molecule that allosterically inhibits human FXIa, blocks its physiological function, and prevents its zymogen activation by other clotting factors under in vitro conditions. Thus, we put forward benzyl tetra-phosphonate 1 as a novel lead inhibitor of human FXIa to guide future efforts in the development of allosteric anticoagulants.
Collapse
Affiliation(s)
- Srabani Kar
- Division of Basic Pharmaceutical Sciences College of PharmacyXavier University of LouisianaNew OrleansLA70125USA
| | - Madhusoodanan Mottamal
- RCMI Cancer Research Center & Department of ChemistryXavier University of LouisianaNew OrleansLA70125USA
| | - Rami A. Al‐Horani
- Division of Basic Pharmaceutical Sciences College of PharmacyXavier University of LouisianaNew OrleansLA70125USA
| |
Collapse
|