1
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
3
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
4
|
Wu Q, Liu Q, Zhan J, Wang Q, Zhang D, He S, Pu S, Zhou Z. Cited2 regulates proliferation and survival in young and old mouse cardiac stem cells. BMC Mol Cell Biol 2019; 20:25. [PMID: 31315556 PMCID: PMC6637580 DOI: 10.1186/s12860-019-0207-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cardiac stem cells (CSCs) exhibit age-dependent characteristics. Cited2 has been implicated in the regulation of heart development; however, there is little known about how Cited2 affects CSC aging. Results Cited2 mRNA and protein level was downregulated in aging heart tissue and CSCs. Old (O)-CSCs showed decreased differentiation and proliferation capacities as compared to Young (Y)-CSCs, the decrease in cell proliferation, increase in apoptosis, and cell cycle arrest in G0/G1 phase in CSCs are mediated by knocdown CITED2expression in (Y)-CSCs. Conclusions Cited2 plays an important role in cell cycle progression and in maintaining the balance between CSC proliferation and apoptosis in the process of aging without influencing cell fate decisions. These findings have important implications for cell-based therapies for heart repair. Electronic supplementary material The online version of this article (10.1186/s12860-019-0207-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qin Liu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jinxi Zhan
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qian Wang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Daxiu Zhang
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shuangli He
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, 541004, China. .,Guangxi Universities Key Laboratory of Stem cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China. .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
5
|
Huang T, González YR, Qu D, Huang E, Safarpour F, Wang E, Joselin A, Im DS, Callaghan SM, Boonying W, Julian L, Dunwoodie SL, Slack RS, Park DS. The pro-death role of Cited2 in stroke is regulated by E2F1/4 transcription factors. J Biol Chem 2019; 294:8617-8629. [PMID: 30967472 DOI: 10.1074/jbc.ra119.007941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.
Collapse
Affiliation(s)
- Tianwen Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Neurology, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian, China
| | - Yasmilde Rodríguez González
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Dianbo Qu
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - En Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Farzaneh Safarpour
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Eugene Wang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alvin Joselin
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Doo Soon Im
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Wassamon Boonying
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lisa Julian
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; Faculties of Medicine and Science University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David S Park
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
6
|
AlAbdi L, He M, Yang Q, Norvil AB, Gowher H. The transcription factor Vezf1 represses the expression of the antiangiogenic factor Cited2 in endothelial cells. J Biol Chem 2018; 293:11109-11118. [PMID: 29794136 PMCID: PMC6052231 DOI: 10.1074/jbc.ra118.002911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Indexed: 01/05/2023] Open
Abstract
Formation of the vasculature by angiogenesis is critical for proper development, but angiogenesis also contributes to the pathogenesis of various disorders, including cancer and cardiovascular diseases. Vascular endothelial zinc finger 1 (Vezf1), is a Krüppel-like zinc finger protein that plays a vital role in vascular development. However, the mechanism by which Vezf1 regulates this process is not fully understood. Here, we show that Vezf1−/− mouse embryonic stem cells (ESC) have significantly increased expression of a stem cell factor, Cbp/p300-interacting transactivator 2 (Cited2). Compared with WT ESCs, Vezf1−/− ESCs inefficiently differentiated into endothelial cells (ECs), which exhibited defects in the tube-formation assay. These defects were due to reduced activation of EC-specific genes concomitant with lower enrichment of histone 3 acetylation at Lys27 (H3K27) at their promoters. We hypothesized that overexpression of Cited2 in Vezf1−/− cells sequesters P300/CBP away from the promoters of proangiogenic genes and thereby contributes to defective angiogenesis in these cells. This idea was supported by the observation that shRNA-mediated depletion of Cited2 significantly reduces the angiogenic defects in the Vezf1−/− ECs. In contrast to previous studies that have focused on the role of Vezf1 as a transcriptional activator of proangiogenic genes, our findings have revealed a role for Vezf1 in modulating the expression of the antiangiogenic factor Cited2. Vezf1 previously has been characterized as an insulator protein, and our results now provide insights into the mechanism, indicating that Vezf1 can block inappropriate, nonspecific interactions of promoters with cis-located enhancers, preventing aberrant promoter activation.
Collapse
Affiliation(s)
| | - Ming He
- From the Department of Biochemistry and
| | | | | | - Humaira Gowher
- From the Department of Biochemistry and .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
7
|
CITED2 Restrains Proinflammatory Macrophage Activation and Response. Mol Cell Biol 2018; 38:MCB.00452-17. [PMID: 29203644 DOI: 10.1128/mcb.00452-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/29/2017] [Indexed: 02/08/2023] Open
Abstract
Macrophages are strategically distributed in mammalian tissues and play an essential role in priming the immune response. However, macrophages need to constantly strike a balance between activation and inhibition states to avoid a futile inflammatory reaction. Here, we identify the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as a potent repressor of macrophage proinflammatory activation. Gain- and loss-of-function studies revealed that CITED2 is required for optimal peroxisome proliferator-activated receptor gamma (PPARγ) activation and attendant select anti-inflammatory gene expression in macrophages. More importantly, deficiency of CITED2 resulted in significant attenuation of rosiglitazone-induced PPARγ activity, PPARγ recruitment to target gene promoters, and anti-inflammatory target gene expression in macrophages. Interestingly, deficiency of Cited2 strikingly heightened proinflammatory gene expression through stabilization of hypoxia-inducible factor 1 alpha (HIF1α) protein in macrophages. Further, overexpression of Egln3 or inhibition of HIF1α in Cited2-deficient macrophages completely reversed elevated proinflammatory cytokine/chemokine gene expression. Importantly, mice bearing a myeloid cell-specific deletion of Cited2 were highly susceptible to endotoxin-induced sepsis symptomatology and mortality. Collectively, our observations identify CITED2 as a novel negative regulator of macrophage proinflammatory activation that protects the host from inflammatory insults.
Collapse
|
8
|
Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells 2018; 7:cells7020009. [PMID: 29385069 PMCID: PMC5850097 DOI: 10.3390/cells7020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
During early vertebrate embryogenesis, both hematopoietic and endothelial lineages derive from a common progenitor known as the hemangioblast. Hemangioblasts derive from mesodermal cells that migrate from the posterior primitive streak into the extraembryonic yolk sac. In addition to primitive hematopoietic cells, recent evidence revealed that yolk sac hemangioblasts also give rise to tissue-resident macrophages and to definitive hematopoietic stem/progenitor cells. In our previous work, we used a novel hemangioblast-specific reporter to isolate the population of chick yolk sac hemangioblasts and characterize its gene expression profile using microarrays. Here we report the microarray profile analysis and the identification of upregulated genes not yet described in hemangioblasts. These include the solute carrier transporters SLC15A1 and SCL32A1, the cytoskeletal protein RhoGap6, the serine protease CTSG, the transmembrane receptor MRC1, the transcription factors LHX8, CITED4 and PITX1, and the previously uncharacterized gene DIA1R. Expression analysis by in situ hybridization showed that chick DIA1R is expressed not only in yolk sac hemangioblasts but also in particular intraembryonic populations of hemogenic endothelial cells, suggesting a potential role in the hemangioblast-derived hemogenic lineage. Future research into the function of these newly identified genes may reveal novel important regulators of hemangioblast development.
Collapse
|
9
|
Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci 2017; 36:6403-19. [PMID: 27307230 DOI: 10.1523/jneurosci.4067-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. SIGNIFICANCE STATEMENT This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.
Collapse
|
10
|
Imakawa K, Dhakal P, Kubota K, Kusama K, Chakraborty D, Karim Rumi MA, Soares MJ. CITED2 modulation of trophoblast cell differentiation: insights from global transcriptome analysis. Reproduction 2016; 151:509-16. [PMID: 26917451 DOI: 10.1530/rep-15-0555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/25/2016] [Indexed: 01/10/2023]
Abstract
Trophoblast stem (TS) cells possess the capacity to differentiate along a multi-lineage pathway yielding several specialized cell types. The regulatory network controlling trophoblast cell differentiation is poorly understood. Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain, 2 (CITED2) has been implicated in the regulation of placentation; however, we know little about how CITED2 acts to influence trophoblast cells. Rat Rcho-1 TS cells can be manipulated to proliferate or differentiate into specialized trophoblast lineages and are an excellent model for investigating trophoblast differentiation. CITED2 transcript and protein showed a robust induction during Rcho-1 TS cell differentiation. We used an shRNA knockdown approach to disrupt CITED2 expression in order to investigate its involvement in trophoblast cell differentiation. RNA-sequencing was used to examine the impact of CITED2 on trophoblast cell differentiation. CITED2 disruption affected the differentiating trophoblast cell transcriptome. CITED2 possessed a prominent role in the regulation of cell differentiation with links to several signal transduction pathways and to hypoxia-regulated and coagulation processes. In summary, our findings indicate that CITED2 contributes to the regulation of trophoblast cell differentiation.
Collapse
Affiliation(s)
- Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal BreedingThe University of Tokyo, Bunkyo-ku, Tokyo, Japan Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kaiyu Kubota
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kazuya Kusama
- Laboratory of Theriogenology and Animal BreedingThe University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Damayanti Chakraborty
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J Soares
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, Beressi JP, Verhoeyen E, Raggueneau V, Maneglier B, Castaigne S, Chomienne C, Chrétien S, Rousselot P, Leboulch P. Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 2015; 525:380-3. [PMID: 26331539 DOI: 10.1038/nature15248] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
Whether cancer is maintained by a small number of stem cells or is composed of proliferating cells with approximate phenotypic equivalency is a central question in cancer biology. In the stem cell hypothesis, relapse after treatment may occur by failure to eradicate cancer stem cells. Chronic myeloid leukaemia (CML) is quintessential to this hypothesis. CML is a myeloproliferative disorder that results from dysregulated tyrosine kinase activity of the fusion oncoprotein BCR-ABL. During the chronic phase, this sole genetic abnormality (chromosomal translocation Ph(+): t(9;22)(q34;q11)) at the stem cell level causes increased proliferation of myeloid cells without loss of their capacity to differentiate. Without treatment, most patients progress to the blast phase when additional oncogenic mutations result in a fatal acute leukaemia made of proliferating immature cells. Imatinib mesylate and other tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL have improved patient survival markedly. However, fewer than 10% of patients reach the stage of complete molecular response (CMR), defined as the point when BCR-ABL transcripts become undetectable in blood cells. Failure to reach CMR results from the inability of TKIs to eradicate quiescent CML leukaemia stem cells (LSCs). Here we show that the residual CML LSC pool can be gradually purged by the glitazones, antidiabetic drugs that are agonists of peroxisome proliferator-activated receptor-γ (PPARγ). We found that activation of PPARγ by the glitazones decreases expression of STAT5 and its downstream targets HIF2α and CITED2, which are key guardians of the quiescence and stemness of CML LSCs. When pioglitazone was given temporarily to three CML patients in chronic residual disease in spite of continuous treatment with imatinib, all of them achieved sustained CMR, up to 4.7 years after withdrawal of pioglitazone. This suggests that clinically relevant cancer eradication may become a generally attainable goal by combination therapy that erodes the cancer stem cell pool.
Collapse
Affiliation(s)
- Stéphane Prost
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Francis Relouzat
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Marc Spentchian
- Département de biologie médicale, Hôpital Mignot, F-78150 Le Chesnay, France
| | - Yasmine Ouzegdouh
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Joseph Saliba
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Gérald Massonnet
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France
| | - Jean-Paul Beressi
- Service d'Endocrinologie et de Diabétologie, Hôpital Mignot, F-78150 Le Chesnay, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, EVIR team, Inserm, U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, 69007 Lyon, France.,Inserm, U895, Centre de Médecine Moléculaire (C3M), équipe 3, 06204 Nice, France
| | - Victoria Raggueneau
- Laboratoire d'hématologie, Centre Hospitalier de Versailles, F-78150 Le Chesnay, France
| | - Benjamin Maneglier
- Unité de Pharmacologie, Service de Biologie Médicale, Centre Hospitalier de Versailles, F-78150 Le Chesnay, France
| | - Sylvie Castaigne
- Service d'Hématologie et d'Oncologie, Hôpital Mignot, Université Versailles Saint-Quentin-en-Yvelines, F-78150 Le Chesnay, France
| | - Christine Chomienne
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France
| | - Stany Chrétien
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France.,Inserm, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France
| | - Philippe Rousselot
- Unité de Biologie Cellulaire, UMR-S-940 Institut Universitaire d'Hématologie, Hôpital Saint Louis, F-75010 Paris, France.,Service d'Hématologie et d'Oncologie, Hôpital Mignot, Université Versailles Saint-Quentin-en-Yvelines, F-78150 Le Chesnay, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), F-92265 Fontenay-aux-Roses, France.,Genetics Division, Brigham &Women's Hospital and Harvard Medical School, Boston, Massachussetts 02115, USA.,Hematology Division, Ramathibodi Hospital and Mahidol University, 10400 Bangkok, Thailand
| |
Collapse
|
12
|
Dobolyi A, Grattan DR, Stolzenberg DS. Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 2014; 26:627-40. [PMID: 25059569 DOI: 10.1111/jne.12185] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022]
Abstract
The preoptic area is a well-established centre for the control of maternal behaviour. An intact medial preoptic area (mPOA) is required for maternal responsiveness because lesion of the area abolishes maternal behaviours. Although hormonal changes in the peripartum period contribute to the initiation of maternal responsiveness, inputs from pups are required for its maintenance. Neurones are activated in different parts of the mPOA in response to pup exposure. In the present review, we summarise the potential inputs to the mPOA of rodent dams from the litter that can activate mPOA neurones. The roles of potential indirect effects through increased prolactin levels, as well as neuronal inputs to the preoptic area, are described. Recent results on the pathway mediating the effects of suckling to the mPOA suggest that neurones containing the neuropeptide tuberoinfundibular peptide of 39 residues in the posterior thalamus are candidates for conveying the suckling information to the mPOA. Although the molecular mechanism through which these inputs alter mPOA neurones to support the maintenance of maternal responding is not yet known, altered gene expression is a likely candidate. Here, we summarise gene expression changes in the mPOA that have been linked to maternal behaviour and explore the idea that chromatin remodelling during mother-infant interactions mediates the long-term alterations in gene expression that sustain maternal responding.
Collapse
Affiliation(s)
- A Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, NAP-Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|