1
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
2
|
Le R, Abbas M, McIntyre AD, Hegele RA. Severe Combined Dyslipidemia With a Complex Genetic Basis. J Investig Med High Impact Case Rep 2020; 7:2324709619877050. [PMID: 31538826 PMCID: PMC6755624 DOI: 10.1177/2324709619877050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background. Familial dysbetalipoproteinemia (also known as type 3 hyperlipoproteinemia) is typically associated with homozygosity for the apolipoprotein E2 isoform, but also sometimes with dominant rare missense variants in the APOE gene. Patients present with roughly equimolar elevations of cholesterol and triglyceride (TG) due to pathologic accumulation of remnant lipoprotein particles. Clinical features include tuberoeruptive xanthomas, palmar xanthomas, and premature vascular disease. Case. A 48-year-old male presented with severe combined dyslipidemia: total cholesterol and TG were 11.5 and 21.4 mmol/L, respectively. He had dyslipidemia since his early 20s, with tuberous xanthomas on his elbows and knees. His body mass index was 42 kg/m2. He also had treated hypertension, mild renal impairment, and a history of gout. He had no history of cardiovascular disease, peripheral arterial disease, or pancreatitis. Multiple medications had been advised including rosuvastatin, ezetimibe, fenofibrate, and alirocumab, but his lipid levels were never adequately controlled. Genetic Analysis. Targeted next-generation sequencing identified (1) the APOE E2/E2 homozygous genotype classically described with familial dysbetalipoproteinemia; (2) in addition, one APOE E2 allele contained the rare heterozygous missense variant p.G145D, previously termed apo E-Bethesda; (3) a rare heterozygous APOC2 nonsense variant p.Q92X; and (4) a high polygenic risk score for TG levels (16 out of 28 TG-raising alleles) at the 82nd percentile for age and sex. Conclusion. The multiple genetic "hits" on top of the classical APOE E2/E2 genotype likely explain the more severe dyslipidemia and refractory clinical phenotype.
Collapse
Affiliation(s)
- Ryan Le
- Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
3
|
Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintão ECR. Phytosterol containing diet increases plasma and whole body concentration of phytosterols in apoE-KO but not in LDLR-KO mice. J Bioenerg Biomembr 2019; 51:131-136. [PMID: 30739226 DOI: 10.1007/s10863-019-09786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Phytosterol metabolism is unknown in the hypercholesterolemia of genetic origin. We investigated the metabolism of phytosterols in a cholesterol-free, phytosterol-containing standard diet in hypercholesterolemic mice knockouts for low density lipoprotein receptor (LDLR) and apolipoprotein E (apoE) mice compared to wild-type mice (controls). Phytosterols were measured in mice tissues by GCMS. ApoE-KO mice absorbed less phytosterols than LDLR-KO and the latter absorbed less phytosterols than control mice, because the intestinal campesterol content was low in both KO mice, and sitosterol was low in the intestine in apoE-KO mice as compared to LDLR-KO mice. Although the diet contained nine times more sitosterol than campesterol, the concentration of sitosterol was lower than that of campesterol in plasma in LDLR-KO, and in the liver in controls and in LDLR-KO, but only in apoE-KO. On the other hand, in the intestine sitosterol was higher than campesterol in controls, and in LDLR-KO but with a tendency only in apoE-KO. Because of the high dietary supply of sitosterol, sitosterol was better taken up by the intestine than campesterol, but the amount of sitosterol was lower than that of campesterol in the liver, while in the whole body the amounts of these phytosterols do not differ from each other. Therefore, via intestinal lymph less sitosterol than campesterol was transferred to the body. However, as compared to controls, in apoE-KO mice, but not in LDLR-KO mice, the increase in campesterol and sitosterol in plasma and in the whole body indicating that apoE-KO mice have a marked defect in the elimination of both phytosterols from the body.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - room 3305, São Paulo, SP, CEP 01246-000, Brazil.
| | - Patrícia Miralda Cazita
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - room 3305, São Paulo, SP, CEP 01246-000, Brazil
| | - Sérgio Catanozi
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - room 3305, São Paulo, SP, CEP 01246-000, Brazil
| | - Edna Regina Nakandakare
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - room 3305, São Paulo, SP, CEP 01246-000, Brazil
| | - Eder Carlos Rocha Quintão
- Laboratorio de Lipides, LIM-10, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - room 3305, São Paulo, SP, CEP 01246-000, Brazil
| |
Collapse
|
4
|
Pirillo A, Garlaschelli K, Arca M, Averna M, Bertolini S, Calandra S, Tarugi P, Catapano AL. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. ATHEROSCLEROSIS SUPP 2018; 29:17-24. [PMID: 28965616 DOI: 10.1016/j.atherosclerosissup.2017.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). METHODS We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). RESULTS A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. CONCLUSIONS This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.
| | - Katia Garlaschelli
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Marcello Arca
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Maurizio Averna
- Biomedical Department of Internal Medicine and Specialistics (DIBIMIS), University of Palermo, Palermo, Italy
| | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW DNA copy number variations (CNVs) are quantitative structural rearrangements that include deletions, duplications, and higher order amplifications. Because of technical limitations, the contribution of this common form of genetic variation to regulation of lipid metabolism and dyslipidemia has been underestimated. RECENT FINDINGS Recent literature involving CNVs and dyslipidemias has focused mainly on rare CNVs causing familial hypercholesterolemia, and a common CNV polymorphism as the major determinant of lipoprotein(a) plasma concentrations. Additionally, there is tantalizing evidence of largely uninvestigated but plausible presence of CNVs underlying other dyslipidemias. We also discuss the future role of improved technologies in facilitating more economic, routine CNV assessment in dyslipidemias. SUMMARY CNVs account for large proportion of human genetic variation and are already known to contribute to susceptibility of dyslipidemias, particularly in about 10% of familial hypercholesterolemia patients. Increasing availability of clinical next-generation sequencing and bioinformatics presents a cost-effective opportunity for novel CNV discoveries in dyslipidemias.
Collapse
|
6
|
Spina R, Noto D, Barbagallo CM, Monastero R, Ingrassia V, Valenti V, Baschi R, Pipitone A, Giammanco A, La Spada MP, Misiano G, Scrimali C, Cefalù AB, Averna MR. Genetic epidemiology of autosomal recessive hypercholesterolemia in Sicily: Identification by next-generation sequencing of a new kindred. J Clin Lipidol 2018; 12:145-151. [PMID: 29153781 DOI: 10.1016/j.jacl.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autosomal recessive hypercholesterolemia (ARH) is a rare inherited lipid disorder. In Sardinia, differently from other world regions, the mutated allele frequency is high. It is caused by mutations in the low-density lipoprotein receptor adaptor protein 1 gene. Fourteen different mutations have been reported so far; in Sardinia, 2 alleles (ARH1 and ARH2) explain most of the cases. Four ARH patients, all carriers of the ARH1 mutation, have been identified in mainland Italy and 2 in Sicily. OBJECTIVE The objectives of the study were to improve the molecular diagnosis of familial hypercholesterolemia (FH) and to estimate the frequency of the ARH1 allele in 2 free-living Sicilian populations. METHODS We sequenced by targeted next-generation sequencing 20 genes related to low-density lipoprotein metabolism in 50 hypercholesterolemic subjects. Subjects from 2 free-living populations from Northern (Ventimiglia Heart Study, 848 individuals) and Southern Sicily (Zabut Zabùt Aging Project, 1717 individuals) were genotyped for ARH1 allele. RESULTS We identified 1 homozygous carrier of the ARH1 mutation among the 50 hypercholesterolemic outpatients. Population-based genotyping of ARH1 in 2565 subjects allowed the identification of 1 heterozygous carrier. The overall estimated allele frequency of ARH1 in Sicily was 0.0002 (0.02%). CONCLUSIONS The identification of a new case of ARH in Sicily among 50 clinically diagnosed FH highlights the importance of next-generation sequencing analysis as tool to improve the FH diagnosis. Our results also indicate that ARH1 carrier status is present in ∼1:2500 of Sicilian inhabitants, confirming that ARH is extremely rare outside Sardinia.
Collapse
Affiliation(s)
- Rossella Spina
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy
| | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Carlo M Barbagallo
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Roberto Monastero
- Department of Experimental Biomedicine and Clinical Neuroscience (BioNeC), University of Palermo, Palermo, Italy
| | - Valeria Ingrassia
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy
| | - Vincenza Valenti
- Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy
| | - Roberta Baschi
- Department of Experimental Biomedicine and Clinical Neuroscience (BioNeC), University of Palermo, Palermo, Italy
| | - Antonina Pipitone
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Antonina Giammanco
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Maria P La Spada
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Gabriella Misiano
- Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy
| | - Chiara Scrimali
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy
| | - Angelo B Cefalù
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy.
| | - Maurizio R Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy; Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Department of Diagnostic Laboratory, AOUP "Paolo Giaccone", Palermo, Italy.
| |
Collapse
|