1
|
Irawati D, Mamo JCL, Dhaliwal SS, Soares MJ, Slivkoff-Clark KM, James AP. Plasma triglyceride and high density lipoprotein cholesterol are poor surrogate markers of pro-atherogenic chylomicron remnant homeostasis in subjects with the metabolic syndrome. Lipids Health Dis 2016; 15:169. [PMID: 27686975 PMCID: PMC5043522 DOI: 10.1186/s12944-016-0330-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Subjects with metabolic syndrome (MetS) exhibit impaired lipoprotein metabolism and have an increased risk of cardiovascular disease. Although the risk is attributed primarily to the risk associated with individual components, it is also likely affected by other associated metabolic defects. Remnants of postprandial lipoproteins show potent atherogenicity in cell and animal models of insulin resistance and in pre-diabetic subjects with postprandial dyslipidemia. However, few studies have considered regulation of chylomicron remnant homeostasis in MetS per se. This study measured the plasma concentration in Caucasian men and women of small dense chylomicrons following fasting and explored associations with metabolic and anthropometric measures. METHODS A total of 215 Australian Caucasian participants (median age 62 years) were investigated. Of them, 40 participants were classified as having MetS. Apolipoprotein (apo) B-48, an exclusive marker of chylomicrons, metabolic markers and anthropometric measures were determined following an overnight fast. RESULTS The fasting apo B-48 concentration was 40 % higher in subjects with MetS than those without MetS. In all subjects, triglyceride (r = 0.445, P < 0.0005), non-HDL cholesterol (r = 0.28, P < 0.0005) and HDL cholesterol concentration (r = -0.272, P < 0.0005) were weakly associated with apo B-48 concentration. In subjects with MetS, the association of apo B-48 with triglyceride and non-HDL cholesterol was enhanced, but neither were robust markers of elevated apo B-48 in MetS (r = 0.618 and r = 0.595 respectively). There was no association between apo B-48 and HDL cholesterol in subjects with MetS. CONCLUSION This study demonstrates a substantial accumulation of pro-atherogenic remnants in subjects with MetS. We have shown that in a Caucasian cohort, the fasting plasma concentration of triglyceride or HDL/non-HDL cholesterol serves as poor surrogate markers of atherogenic chylomicron remnants. These findings suggest that subjects with MetS exhibit a chronic defect in chylomicron metabolism that is likely to contribute to their increased CV risk.
Collapse
Affiliation(s)
- Deasy Irawati
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Faculty of Medicine, Mataram University, West Nusa Tenggara, Indonesia
| | - John C L Mamo
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Satvinder S Dhaliwal
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Mario J Soares
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karin M Slivkoff-Clark
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia
| | - Anthony P James
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, GPO Box U1987, Perth, WA, 6845, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.
| |
Collapse
|
2
|
Matikainen N, Adiels M, Söderlund S, Stennabb S, Ahola T, Hakkarainen A, Borén J, Taskinen MR. Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride-rich lipoproteins. Obesity (Silver Spring) 2014; 22:1854-9. [PMID: 24890344 DOI: 10.1002/oby.20781] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Postprandial hypertriglyceridemia is an important risk factor for cardiovascular disease. The mechanisms are still unclear. Here it was tested if hepatic de novo lipogenesis (DNL) and lipid oxidation influence the postprandial responses of triglyceride-rich lipoproteins (TRL) in humans. METHODS The contribution of hepatic DNL to hepatic TRL production was analyzed in 67 men and women with a moderate range of BMI after a fat-rich meal. Also, lipase activities, liver fat, and 3-OH-butyrate were quantitated as an indicator of β-oxidation. Lipoproteins and metabolic markers were measured in fasting and postprandial blood samples. RESULTS Postprandial DNL correlates with postprandial TG and apolipoprotein (apo) C-III responses in plasma and with TG, apoB48 and apoB100 responses in TRLs and their larger remnant particles. Fasting and 8-h postprandial DNL was inversely related to 3-OH-butyrate but not to liver fat content. Fasting apoC-III and 3-OH-butyrate, but not liver fat, independently predicted fasting DNL. CONCLUSIONS The fasting and 8-h postprandial rate of DNL was inversely associated with the hepatic lipid oxidation in humans. DNL contributes significantly to the TG content in TRLs but not to the amount of liver fat, suggesting that an imbalance between DNL and fat oxidation contributes to postprandial atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Niina Matikainen
- Department of Medicine, Cardiovascular Research Unit, Diabetes and Obesity Research Program, Heart and Lung Center, University of Helsinki, Finland; Division of Endocrinology, Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|