1
|
Martins LA, García-Parra N, Ródenas-Rochina J, Cordón L, Sempere A, Ribeiro C, Lanceros-Méndez S, Gómez-Ribelles JL. Assemblable 3D biomimetic microenvironment for hMSC osteogenic differentiation. Biomed Mater 2024; 19:065013. [PMID: 39303743 DOI: 10.1088/1748-605x/ad7dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Adequate simulation mimicking a tissue's native environment is one of the elemental premises in tissue engineering. Although various attempts have been made to induce human mesenchymal stem cells (hMSC) into an osteogenic pathway, they are still far from widespread clinical application. Most strategies focus primarily on providing a specific type of cue, inadequately replicating the complexity of the bone microenvironment. An alternative multifunctional platform for hMSC osteogenic differentiation has been produced. It is based on poly(vinylidene fluoride) (PVDF) and cobalt ferrites magnetoelectric microspheres, functionalized with collagen and gelatin, and packed in a 3D arrangement. This platform is capable of performing mechanical stimulation of piezoelectric PVDF, mimicking the bones electromechanical biophysical cues. Surface functionalization with extracellular matrix biomolecules and osteogenic medium complete this all-round approach. hMSC were cultured in osteogenic inducing conditions and tested for proliferation, surface biomarkers, and gene expression to evaluate their osteogenic commitment.
Collapse
Affiliation(s)
- Luis A Martins
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Nadia García-Parra
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Lourdes Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Amparo Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Hematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Clarisse Ribeiro
- CF-UM-UP-Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- CF-UM-UP-Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal
- BCMaterials-Basque Center for Materials Applications and Nanostructures, University of the Basque Country, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Luis Gómez-Ribelles
- Center for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Sobaihi M, Habiballah AK, Habib AM. TMEM38B Gene Mutation Associated With Osteogenesis Imperfecta. Cureus 2024; 16:e69021. [PMID: 39385871 PMCID: PMC11463972 DOI: 10.7759/cureus.69021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Osteogenesis imperfecta is a genetic disorder characterized by decreased bone density, bone deformities, and fractures. It results from mutations in different genes, including all steps of collagen 1 synthesis and modifications. In addition, the gene is involved in the homeostasis of intracellular calcium. TMEM38B is a gene involved in the formation of a cation channel responsible for calcium entry intracellularly. Mutations in this gene are associated with osteogenesis imperfecta. However, this mutation has not been frequently discussed in the literature. In our study, we report a case of TMEM38B-associated autosomal recessive osteogenesis imperfecta in a child of a consanguineous family presented with a history of multiple prenatal and postnatal fractures. No other associated complications are present in our case.
Collapse
Affiliation(s)
- Mrouge Sobaihi
- Department of Pediatric, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| | - Abdullah K Habiballah
- Department of Pediatric, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| | - Abdulrahman M Habib
- Department of Pediatric, King Faisal Specialist Hospital and Research Centre, Jeddah, SAU
| |
Collapse
|
3
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01266-5. [PMID: 39127989 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Farah RE, Farah RE, Najjar MK, Atatrah RW, Eideh GI, Abuisneina SA. Genetic Anomalies in Pediatric Orthopedics: A Case Study of a New Rare Sporadic Mutation of Osteogenesis Imperfecta. Cureus 2024; 16:e64909. [PMID: 39156321 PMCID: PMC11330624 DOI: 10.7759/cureus.64909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) arises from a collagen type 1 defect due to several gene mutations, particularly COL1A1 and COL1A2. Its inheritance pattern is typically autosomal dominant, which is more common, or autosomal recessive, although sporadic cases also occur. Prenatal ultrasound can detect severe types, but genetic testing is necessary for confirmation, often at birth or in early childhood. We present a rare case of sporadic OI type III involving a three-year-old boy. Prenatal ultrasound initially revealed limb deformities and skeletal dysplasia, with subsequent confirmation at birth through bone deformities and multiple fractures. Exome sequencing confirmed the diagnosis at 15 months, revealing a new, rare variant in the COL1A2 gene. Pamidronate treatment began at seven months.
Collapse
Affiliation(s)
- Rahaf E Farah
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
| | - Rou'a E Farah
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
| | - Mays K Najjar
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
| | - Raneen W Atatrah
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
| | - Ghadeer I Eideh
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
| | - Shadi A Abuisneina
- College of Medicine and Health Science, Palestine Polytechnic University, Hebron, PSE
- Pediatric Orthopedic Department, Alia Hospital, Hebron, PSE
| |
Collapse
|
5
|
Mehta P, Vishvkarma R, Gupta S, Chattopadhyay N, Rajender S. Exome sequencing identified mutations in the WNT1 and COL1A2 genes in osteogenesis imperfecta cases. Mol Biol Rep 2024; 51:449. [PMID: 38536562 DOI: 10.1007/s11033-024-09326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a heritable connective tissue disorder characterized by bone deformities, fractures and reduced bone mass. OI can be inherited as a dominant, recessive, or X-linked disorder. The mutational spectrum has shown that autosomal dominant mutations in the type I collagen-encoding genes are responsible for OI in 85% of the cases. Apart from collagen genes, mutations in more than 20 other genes, such as CRTAP, CREB3L1, MBTPS2, P4HB, SEC24D, SPARC, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, TMEM38B, and IFITM5 have been reported in OI. METHODS AND RESULTS To understand the genetic cause of OI in four cases, we conducted whole exome sequencing, followed by Sanger sequencing. In case #1, we identified a novel c.506delG homozygous mutation in the WNT1 gene, resulting in a frameshift and early truncation of the protein at the 197th amino acid. In cases #2, 3 and 4, we identified a heterozygous c.838G > A mutation in the COL1A2 gene, resulting in a p.Gly280Ser substitution. The clinvar frequency of this mutation is 0.000008 (GnomAD-exomes). This mutation has been identified by other studies as well and appears to be a mutational hot spot. These pathogenic mutations were found to be absent in 96 control samples analyzed for these sites. The presence of these mutations in the cases, their absence in controls, their absence or very low frequency in general population, and their evaluation using various in silico prediction tools suggested their pathogenic nature. CONCLUSIONS Mutations in the WNT1 and COL1A2 genes explain these cases of osteogenesis imperfecta.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Vishvkarma
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sushil Gupta
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Singh Rajender
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Senturk L, Gulec C, Sarac Sivrikoz T, Kayserili H, Kalelioglu IH, Avci S, Has R, Coucke P, Kalayci T, Wollnik B, Karaman B, Toksoy G, Symoens S, Yigit G, Yuksel A, Basaran S, Tuysuz B, Altunoglu U, Uyguner ZO. Association of Antenatal Evaluations with Postmortem and Genetic Findings in the Series of Fetal Osteogenesis Imperfecta. Fetal Diagn Ther 2024; 51:285-299. [PMID: 38346409 DOI: 10.1159/000536324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2023] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Counseling osteogenesis imperfecta (OI) pregnancies is challenging due to the wide range of onsets and clinical severities, from perinatal lethality to milder forms detected later in life. METHODS Thirty-eight individuals from 36 families were diagnosed with OI through prenatal ultrasonography and/or postmortem clinical and radiographic findings. Genetic analysis was conducted on 26 genes associated with OI in these subjects that emerged over the past 20 years; while some genes were examined progressively, all 26 genes were examined in the group where no pathogenic variations were detected. RESULTS Prenatal and postnatal observations both consistently showed short limbs in 97%, followed by bowing of the long bones in 89%. Among 32 evaluated cases, all exhibited cranial hypomineralization. Fractures were found in 29 (76%) cases, with multiple bones involved in 18 of them. Genetic associations were disclosed in 27 families with 22 (81%) autosomal dominant and five (19%) autosomal recessive forms, revealing 25 variants in six genes (COL1A1, COL1A2, CREB3L1, P3H1, FKBP10, and IFITM5), including nine novels. Postmortem radiological examination showed variability in intrafamily expression of CREBL3- and P3H1-related OI. CONCLUSION Prenatal diagnosis for distinguishing OI and its subtypes relies on factors such as family history, timing, ultrasound, genetics, and postmortem evaluation.
Collapse
Affiliation(s)
- Leyli Senturk
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tugba Sarac Sivrikoz
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Ibrahim Halil Kalelioglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sahin Avci
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Recep Has
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tugba Kalayci
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Gokhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Atil Yuksel
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seher Basaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Medical School, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Zhao Y, Yu Z, Song Y, Fan L, Lei T, He Y, Hu S. The Regulatory Network of CREB3L1 and Its Roles in Physiological and Pathological Conditions. Int J Med Sci 2024; 21:123-136. [PMID: 38164349 PMCID: PMC10750332 DOI: 10.7150/ijms.90189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
CREB3 subfamily belongs to the bZIP transcription factor family and comprises five members. Normally they are located on the endoplasmic reticulum (ER) membranes and proteolytically activated through RIP (regulated intramembrane proteolysis) on Golgi apparatus to liberate the N-terminus to serve as transcription factors. CREB3L1 acting as one of them transcriptionally regulates the expressions of target genes and exhibits distinct functions from the other members of CREB3 family in eukaryotes. Physiologically, CREB3L1 involves in the regulation of bone morphogenesis, neurogenesis, neuroendocrine, secretory cell differentiation, and angiogenesis. Pathologically, CREB3L1 implicates in the modulation of osteogenesis imperfecta, low grade fibro myxoid sarcoma (LGFMS), sclerosing epithelioid fibrosarcoma (SEF), glioma, breast cancer, thyroid cancer, and tissue fibrosis. This review summarizes the upstream and downstream regulatory network of CREB3L1 and thoroughly presents our current understanding of CREB3L1 research progress in both physiological and pathological conditions with special focus on the novel findings of CREB3L1 in cancers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Liumeizi Fan
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Ting Lei
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Yinbin He
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Sheng Hu
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| |
Collapse
|
9
|
Vankevičienė K, Matulevičienė A, Mazgelytė E, Paliulytė V, Vankevičienė R, Ramašauskaitė D. A Sporadic Case of COL1A1 Osteogenesis Imperfecta: From Prenatal Diagnosis to Outcomes in Infancy-Case Report and Literature Review. Genes (Basel) 2023; 14:2062. [PMID: 38003005 PMCID: PMC10671798 DOI: 10.3390/genes14112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Osteogenesis imperfecta (OI), also known as brittle bone disease, belongs to a rare heterogeneous group of inherited connective tissue disorders. In experienced prenatal centers, severe cases of OI can be suspected before birth from the first trimester prenatal ultrasound screening. In this article, we describe a case report of OI suspected at the 26th week of gestation and the patient's outcomes in infancy one year after birth, as well as compare our case to other prenatally or soon-after-birth suspected and/or diagnosed OI clinical case reports in the literature. This case was managed by a multidisciplinary team. In this clinical case, OI was first suspected when prenatal ultrasound revealed asymmetric intrauterine growth restriction and skeletal dysplasia features. The diagnosis was confirmed after birth using COL1A1 gene variant detection via exome sequencing; the COL1A1 gene variant causes OI types I-IV. The familial history was negative for both pregnancy-related risk factors and genetic diseases. At one year old, the patient's condition remains severe with bisphosphonate therapy.
Collapse
Affiliation(s)
- Karolina Vankevičienė
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Aušra Matulevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, LT-08661 Vilnius, Lithuania;
| | - Eglė Mazgelytė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania;
| | - Virginija Paliulytė
- Clinic of Obstetrics and Gynaecology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania;
| | - Ramunė Vankevičienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania;
| | - Diana Ramašauskaitė
- Clinic of Obstetrics and Gynaecology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
10
|
Correia Barão R, Santos M, Marques RE, Quintas AM, Guerra P. Keratoconus tomographic indices in osteogenesis imperfecta. Graefes Arch Clin Exp Ophthalmol 2023; 261:2585-2592. [PMID: 37074408 PMCID: PMC10432331 DOI: 10.1007/s00417-023-06059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
PURPOSE Osteogenesis imperfecta (OI) is a rare inherited disease affecting collagen-rich tissues. Ocular complications have been reported such as thin corneas, low ocular rigidity, keratoconus, among others. The purpose of this study is to characterize corneal tomographic features in OI patients compared to unaffected patients, with particular focus on commonly studied keratoconus indices. METHODS Cross-sectional case-control study including 37 OI patients and 37 age-matched controls. Patients and controls underwent comprehensive ophthalmological examination including corneal Scheimpflug tomography with a Pentacam HR device (Oculus Optikgeräte GmbH, Wetzlar, Germany) to analyse and compare topometric, tomographic, pachymetric and Belin-Ambrósio Enhanced Ectasia Display III (BAD-D) data of both eyes of each patient. RESULTS Most OI patients had type I disease (n = 24; 65%) but type III-VII patients were also included. Two patients had clinically overt bilateral keratoconus. OI patients had significantly higher maximum keratometry (45.2 ± 2.1 vs. 43.7 ± 1.2; p = 0.0416), front and back elevation (3.0 ± 3.3 vs. 2.1 ± 1.3, p = 0.0201; 11.1 ± 8.2 vs. 5.0 ± 3.7, p < 0.0001), index of surface variance (25.5 ± 13 vs. 17.4 ± 8.3; p = 0.0016), index of vertical asymmetry (0.21 ± 0.14 vs. 0.15 ± 0.06; p = 0.0215), index of height asymmetry (9.2 ± 14 vs. 6.0 ± 4.5; p = 0.0421), index of height decentration (0.02 ± 0.01 vs. 0.01 ± 0.01; p < 0.0001) and average pachymetric progression (1.01 ± 0.19 vs. 0.88 ± 0.14; p < 0.0001) readings. Thinnest corneal thickness and maximum Ambrósio relational thickness were significantly lower (477 ± 52 vs. 543 ± 26; 387 ± 95 vs. 509 ± 49; p < 0.0001). Two-thirds of OI patients had corneas with a minimum thickness < 500 µm. BAD-D value was significantly higher in OI patients (2.1 ± 1.4 vs. 0.9 ± 0.2; p < 0.0001). CONCLUSION OI patients showed significant changes in corneal profiles compared with healthy subjects. A high proportion of patients had tomographically suspect corneas when using keratoconus diagnostic indices. Further studies are warranted to assess the true risk of corneal ectasia in OI patients.
Collapse
Affiliation(s)
- Rafael Correia Barão
- Department of Ophthalmology, Hospital de Santa Maria, CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal.
- Visual Sciences Study Center, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - Miguel Santos
- Department of Ophthalmology, Hospital de Santa Maria, CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
| | - Raquel Esteves Marques
- Visual Sciences Study Center, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Miguel Quintas
- Department of Ophthalmology, Hospital de Santa Maria, CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
- Visual Sciences Study Center, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Paulo Guerra
- Department of Ophthalmology, Hospital de Santa Maria, CHULN, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
- Visual Sciences Study Center, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
11
|
DeMasters DP, Paulus AO, Scott JN. Osteogenesis Imperfecta Diagnosed in an Active Duty Female Due to CREB3L1 Heterozygosity. Mil Med 2023; 188:e2802-e2804. [PMID: 35978537 DOI: 10.1093/milmed/usac245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a heritable, collagen-related disorder with varying degrees of disease severity and systemic involvement. The hallmark of OI is bone matrix fragility, but diverse effects related to structural integrity and impaired development of connective tissue can account for hearing loss, blue sclera, dentinogenesis imperfecta, frequent fractures, joint hypermobility, and cardiac valve or vessel fragility in some cases. There is emerging recognition of unique genetic mutations leading to OI including CREB3L1, which codes for an important transcription factor for differentiation of osteoblasts. CASE PRESENTATION We present a case of OI diagnosed in an active duty female with multiple prior fractures and heterozygous CREB3L1, a rare cause of OI. CONCLUSION This case highlights the importance of consideration of the variable phenotypes of OI and careful assessment of fracture history during evaluation at the Military Entrance Processing Station and subsequent encounters at military treatment facilities to improve readiness.
Collapse
Affiliation(s)
- David P DeMasters
- Rheumatology Department, USAF Wright Patterson Medical Center, Wright-Patterson AFB, OH 45433, USA
| | - Andrew O Paulus
- Rheumatology Department, USAF Wright Patterson Medical Center, Wright-Patterson AFB, OH 45433, USA
| | - Joshua N Scott
- Rheumatology Department, USAF Wright Patterson Medical Center, Wright-Patterson AFB, OH 45433, USA
| |
Collapse
|
12
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
13
|
El-Gazzar A, Voraberger B, Rauch F, Mairhofer M, Schmidt K, Guillemyn B, Mitulović G, Reiterer V, Haun M, Mayr MM, Mayr JA, Kimeswenger S, Drews O, Saraff V, Shaw N, Fratzl-Zelman N, Symoens S, Farhan H, Högler W. Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress. EMBO Mol Med 2023; 15:e16834. [PMID: 36916446 PMCID: PMC10086588 DOI: 10.15252/emmm.202216834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder characterized by bone fragility and reduced bone mass generally caused by defects in type I collagen structure or defects in proteins interacting with collagen processing. We identified a homozygous missense mutation in SEC16B in a child with vertebral fractures, leg bowing, short stature, muscular hypotonia, and bone densitometric and histomorphometric features in keeping with OI with distinct ultrastructural features. In line with the putative function of SEC16B as a regulator of trafficking between the ER and the Golgi complex, we showed that patient fibroblasts accumulated type I procollagen in the ER and exhibited a general trafficking defect at the level of the ER. Consequently, patient fibroblasts exhibited ER stress, enhanced autophagosome formation, and higher levels of apoptosis. Transfection of wild-type SEC16B into patient cells rescued the collagen trafficking. Mechanistically, we show that the defect is a consequence of reduced SEC16B expression, rather than due to alterations in protein function. These data suggest SEC16B as a recessive candidate gene for OI.
Collapse
Affiliation(s)
- Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Barbara Voraberger
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mario Mairhofer
- Department of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Linz, Austria
| | - Katy Schmidt
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Brecht Guillemyn
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Goran Mitulović
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University Vienna, Vienna, Austria
| | - Veronika Reiterer
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margot Haun
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela M Mayr
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | | | - Oliver Drews
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University, Linz, Austria
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Nick Shaw
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,The Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Nadja Fratzl-Zelman
- 1st Medical Department Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hesso Farhan
- Institute of Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK.,The Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
Kantaputra PN, Angkurawaranon S, Intachai W, Ngamphiw C, Olsen B, Tongsima S, Cox TC, Ketudat Cairns JR. A Founder Intronic Variant in P3H1 Likely Results in Aberrant Splicing and Protein Truncation in Patients of Karen Descent with Osteogenesis Imperfecta Type VIII. Genes (Basel) 2023; 14:genes14020322. [PMID: 36833249 PMCID: PMC9956579 DOI: 10.3390/genes14020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
One of the most important steps in post-translational modifications of collagen type I chains is the hydroxylation of carbon-3 of proline residues by prolyl-3-hydroxylase-1 (P3H1). Genetic variants in P3H1 have been reported to cause autosomal recessive osteogenesis imperfecta (OI) type VIII. Clinical and radiographic examinations, whole-exome sequencing (WES), and bioinformatic analysis were performed in 11 Thai children of Karen descent affected by multiple bone fractures. Clinical and radiographic findings in these patients fit OI type VIII. Phenotypic variability is evident. WES identified an intronic homozygous variant (chr1:43212857A > G; NM_022356.4:c.2055 + 86A > G) in P3H1 in all patients, with parents in each patient being heterozygous for the variant. This variant is predicted to generate a new "CAG" splice acceptor sequence, resulting in the incorporation of an extra exon that leads to a frameshift in the final exon and subsequent non-functional P3H1 isoform a. Alternative splicing of P3H1 resulting in the absence of functional P3H1 caused OI type VIII in 11 Thai children of Karen descent. This variant appears to be specific to the Karen population. Our study emphasizes the significance of considering intronic variants.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| | - Salita Angkurawaranon
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James R. Ketudat Cairns
- Center for Biomolecular Structure, Function and Application and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
15
|
Ghosh DK, Udupa P, Shrikondawar AN, Bhavani GS, Shah H, Ranjan A, Girisha KM. Mutant MESD links cellular stress to type I collagen aggregation in osteogenesis imperfecta type XX. Matrix Biol 2023; 115:81-106. [PMID: 36526215 PMCID: PMC7615836 DOI: 10.1016/j.matbio.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Aberrant forms of endoplasmic reticulum (ER)-resident chaperones are implicated in loss of protein quality control in rare diseases. Here we report a novel mutation (p.Asp233Asn) in the ER retention signal of MESD by whole exome sequencing of an individual diagnosed with osteogenesis imperfecta (OI) type XX. While MESDD233N has similar stability and chaperone activity as wild-type MESD, its mislocalization to cytoplasm leads to imbalance of ER proteostasis, resulting in improper folding and aggregation of proteins, including LRP5 and type I collagen. Aggregated LRP5 loses its plasma membrane localization to disrupt the expression of WNT-responsive genes, such as BMP2, BMP4, in proband fibroblasts. We show that MESD is a direct chaperone of pro-α1(I) [COL1A1], and absence of MESDD233N in ER results in cytosolic type I collagen aggregates that remain mostly not secreted. While cytosolic type I collagen aggregates block the intercellular nanotubes, decreased extracellular type I collagen also results in loss of interaction of ITGB1 with type I collagen and weaker attachment of fibroblasts to matrix. Although proband fibroblasts show increased autophagy to degrade the aggregated type I collagen, an overall cellular stress overwhelms the proband fibroblasts. In summary, we present an essential chaperone function of MESD for LRP5 and type I collagen and demonstrating how the D233N mutation in MESD correlates with impaired WNT signaling and proteostasis in OI.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Hitesh Shah
- Department of Pediatric Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
16
|
Zhou XD, Qu YW, Wang L, Jia FH, Chen P, Wang YP, Liu HF. Identification of potential hub genes of gastric cancer. Medicine (Baltimore) 2022; 101:e30741. [PMID: 36254003 PMCID: PMC9575828 DOI: 10.1097/md.0000000000030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumor originated from gastric mucosa epithelium. It is the third leading cause of cancer mortality in China. The early symptoms are not obvious. When it is discovered, it has developed to the advanced stage, and the prognosis is poor. In order to screen for potential genes for GC development, this study obtained GSE118916 and GSE109476 from the gene expression omnibus (GEO) database for bioinformatics analysis. METHODS First, GEO2R was used to identify differentially expressed genes (DEG) and the functional annotation of DEGs was performed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The Search Tool for the Retrieval of Interacting Genes (STRING) tool was used to construct protein-protein interaction (PPI) network and the most important modules and hub genes were mined. Real time quantitative polymerase chain reaction assay was performed to verify the expression level of hub genes. RESULTS A total of 139 DEGs were identified. The functional changes of DEGs are mainly concentrated in the cytoskeleton, extracellular matrix and collagen synthesis. Eleven genes were identified as core genes. Bioinformatics analysis shows that the core genes are mainly enriched in many processes related to cell adhesion and collagen. CONCLUSION In summary, the DEGs and hub genes found in this study may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xu-Dong Zhou
- The Clinical College of the General Hospital of Chinese People's Armed Police Forces, Anhui Medical University, Hefei, P.R. China
| | - Ya-Wei Qu
- Department of Gastroenterology, Third Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Li Wang
- Department of Gastroenterology, Huamei Hospital of China National University of Science and Technology, Ningbo, P.R. China
| | - Fu-Hua Jia
- Department of Gastroenterology, Huamei Hospital of China National University of Science and Technology, Ningbo, P.R. China
| | - Peng Chen
- Department of Ultrasound, Graduate School of Jinzhou Medical University, Jinzhou, P.R. China
| | - Yin-Pu Wang
- Department of Gastroenterology, Baoji Hospital Affiliated to Xi’an Jiaotong University, Baoji, P.R. China
| | - Hai-Feng Liu
- The Clinical College of the General Hospital of Chinese People's Armed Police Forces, Anhui Medical University, Hefei, P.R. China
- *Correspondence: Hai-Feng Liu, The Clinical College of the General Hospital of Chinese People's Armed Police Forces, Anhui Medical University, Hefei 230032, P.R. China (e-mail: )
| |
Collapse
|
17
|
Zerfu T, Yong B, Harrington J, Howard A. Does the Skeletal Phenotype of Osteogenesis Imperfecta Differ for Patients With Non-COL1A1/2 Mutations? A Retrospective Study in 113 Patients. J Pediatr Orthop 2022; 42:e507-e514. [PMID: 35200215 DOI: 10.1097/bpo.0000000000002116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a heritable disease characterized by bone fragility and other extra skeletal manifestations. Most patients with OI have mutations in the COL1A1 or COL1A2 genes. However, a significant minority of patients with clinical OI have non-COL1A1/2 mutations, which have become easier to detect with the use of genetic panels. Traditional understanding of OI pathogenesis was expanded because of these new mutations, and their phenotypic-genotypic relationship is largely unknown. We hypothesized that patients with non-COL1A1/2 mutations have different skeletal clinical presentations from those with OI caused by COL1A1/2 mutations. METHODS Patients were categorized into 4 groups according to our modified functional classification, namely, quantitative COL1A1/2 haploinsufficiency (group 1), qualitative COL1A1/2 dominant negative mutations (group 2), mutations indirectly affecting type I collagen synthesis, processing and posttranslational modification (group 3) and mutations altering osteoblast differentiation and function (group 4). Both group 3 and 4 were classified as non-COL1A1/2 mutation group. RESULTS Of 113 OI patients included, 51 had COL1A1/2 quantitative haploinsufficiency mutations (group 1), 39 had COL1A1/2 qualitative dominant negative mutations (group 2), and 23 patients had OI caused by mutations in 1 of 9 other noncollagen genes (groups 3/4). Patients with non-COL1A1/2 mutations (groups 3 and 4) have severe skeletal presentations. Specifically, OI patients with non-COL1A1/2 mutations experienced more perinatal fractures, vertebral compression fractures and had more long bone deformities. Although the occurrence of scoliosis was similar, the cobb angle was larger in the non-COL1A1/2 mutation group. Radial head dislocations, ossification of interosseous membrane, extraskeletal ossification, cervical kyphosis, and champagne glass deformity of the pelvis were more frequent in this group. CONCLUSIONS The clinical phenotype of OI in patients with non-COL1A1/2 is severe and has unique features. This information is useful for clinical diagnosis and prognosis. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
| | | | - Jennifer Harrington
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
18
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
19
|
Koumakis E, Cormier-Daire V, Dellal A, Debernardi M, Cortet B, Debiais F, Javier RM, Thomas T, Mehsen-Cetre N, Cohen-Solal M, Fontanges E, Laroche M, Porquet-Bordes V, Marcelli C, Benachi A, Briot K, Roux C, Cormier C. Osteogenesis Imperfecta: characterization of fractures during pregnancy and post-partum. Orphanet J Rare Dis 2022; 17:22. [PMID: 35090500 PMCID: PMC8796450 DOI: 10.1186/s13023-021-02148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pregnancy and breastfeeding are associated with bone density loss. Fracture occurrence during pregnancy and post-partum, and its determinants, remain poorly known in Osteogenesis Imperfecta (OI). The aim of this study was to characterize fractures that occurred during pregnancy and post-partum in OI patients. Results We conducted a retrospective multicentric study including a total of 50 previously pregnant OI women from 10 Bone Centers in France. Among these patients, 12 (24%) patients experienced fractures during pregnancy or in the 6 months following delivery, and 38 (76%) did not experience any fracture. The most frequent localizations were: proximal femur (25%), spine (25%), distal femur (12.5%), and pelvis (12.5%). Fractures during pregnancy occurred during the third trimester and post-partum fractures occurred with a mean delay of 2 months following delivery. No fractures occurred during childbirth. We next compared the 12 patients with pregnancy or post-partum fractures with the 38 patients without fractures. Mean age at pregnancy was 32.7 ± 3.1 years-old in the fractured group, vs 29.3 ± 5.0 years-old in the non-fractured group (p = 0.002). Breastfeeding was reported in 85.7% of patients in the fractured group, vs 47.1% in the non-fractured group (p = 0.03). All patients with post-partum fractures were breastfeeding. Bone mineral density was significantly lower in patients with pregnancy-related fractures compared with other patients: spine Z-score − 2.9 ± 1.6DS vs − 1.5 ± 1.7DS (p = 0.03), and total hip Z-score − 2.0 ± 0.7DS vs − 0.5 ± 1.4DS (p = 0.04). At least one osteoporosis-inducing risk factor or disease other than OI was identified in 81.8% vs 58.6% of fractured vs non-fractured patients (not significant). Fracture during pregnancy or post-partum was not associated with the severity of OI. Bisphosphonates before pregnancy were reported in 16.7% and 21.1% of patients with pregnancy-related fractures and non-fractured patients, respectively (not significant). Conclusions OI management during pregnancy and post-partum should aim for optimal control of modifiable osteoporosis risk factors, particularly in patients with low BMD. Breastfeeding should be avoided.
Collapse
Affiliation(s)
- Eugénie Koumakis
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France. .,Clinical Genetics, Reference Center for bone disorders, INSERM UMR 1163, Imagine Institute, Necker Enfants-Malades Hospital, AP-HP, Paris University, Paris, France.
| | - Valérie Cormier-Daire
- Clinical Genetics, Reference Center for bone disorders, INSERM UMR 1163, Imagine Institute, Necker Enfants-Malades Hospital, AP-HP, Paris University, Paris, France
| | - Azeddine Dellal
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Marc Debernardi
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Bernard Cortet
- Department of Rheumatology and ULR 4490 (MABLAB), Competence Center for Rare Genetic Bone Disorders, University-Hospital of Lille, 59000, Lille, France
| | - Françoise Debiais
- Department of Rheumatology, CHU Poitiers; CNRS ERL7003, University of Poitiers, Poitiers, France
| | - Rose-Marie Javier
- Rheumatology Department, Competence Center for Rare Genetic Bone Disorders, University-Hospital of Strasbourg, 67098, Strasbourg, France
| | - Thierry Thomas
- Department of Rheumatology, CHU Saint-Etienne, INSERM U1059, Université de Lyon, Saint-Etienne, France
| | - Nadia Mehsen-Cetre
- Service de Rhumatologie, Centre de Compétence MOC et Dysplasie Fibreuse, CHU Bordeaux-Tripode, Bordeaux, France
| | - Martine Cohen-Solal
- Biocar Inserm U1132 and Université de Paris, Hôpital Lariboisière, 75010, Paris, France
| | - Elisabeth Fontanges
- Department of Rheumatology, Hôpital Edouard Herriot, CHU de Lyon, Lyon, France
| | - Michel Laroche
- Centre de Rhumatologie, CHU Purpan, 1 place du Dr Baylac, 31059, Toulouse Cedex, France
| | - Valérie Porquet-Bordes
- Endocrine, Bone Diseases, and Genetics Unit, Reference Centre for Rare Diseases of the Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | | | - Alexandra Benachi
- Departement of Obstetrics, Gynecology and Reproductive Medicine, Hôpital Antoine-Béclère - Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Karine Briot
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.,INSERM UMR 1153, INSERM, PRESS Sorbonne Paris-Cité, Paris, France
| | - Christian Roux
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.,INSERM UMR 1153, INSERM, PRESS Sorbonne Paris-Cité, Paris, France
| | - Catherine Cormier
- Rheumatology Department, Cochin Hospital, Paris, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-constitutive site, Cochin Hospital, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
20
|
Ballenger KL, Tugarinov N, Talvacchio SK, Knue MM, Dang Do AN, Ahlman MA, Reynolds JC, Yanovski JA, Marini JC. Osteogenesis Imperfecta: The Impact of Genotype and Clinical Phenotype on Adiposity and Resting Energy Expenditure. J Clin Endocrinol Metab 2022; 107:67-76. [PMID: 34519823 PMCID: PMC8684495 DOI: 10.1210/clinem/dgab679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in type I collagen or collagen-related proteins cause osteogenesis imperfecta (OI). Energy expenditure and body composition in OI could reflect reduced mobility or intrinsic defects in osteoblast differentiation increasing adipocyte development. OBJECTIVE This study compares adiposity and resting energy expenditure (REE) in OI and healthy controls (HC), for OI genotype- and Type-associated differences. METHODS We studied 90 participants, 30 with OI (11 COL1A1 Gly, 8 COL1A2 Gly, 4 COL1A1 non-Gly, 1 COL1A2 non-Gly, 6 non-COL; 8 Type III, 16 Type IV, 4 Type VI, 1 Type VII, 1 Type XIV) and 60 HC with sociodemographic characteristics/BMI/BMIz similar to the OI group. Participants underwent dual-energy x-ray absorptiometry to determine lean mass and fat mass percentage (FM%) and REE. FM% and REE were compared, adjusting for covariates, to examine the relationship of OI genotypes and phenotypic Types. RESULTS FM% did not differ significantly in all patients with OI vs HC (OI: 36.6% ± 1.9%; HC: 32.7% ± 1.2%; P = 0.088). FM% was, however, greater than HC for those with non-COL variants (P = 0.016). FM% did not differ from HC among OI Types (P values > 0.05).Overall, covariate-adjusted REE did not differ significantly between OI and HC (OI: 1376.5 ± 44.7 kcal/d; HC: 1377.0 ± 96 kcal/d; P = 0.345). However, those with non-COL variants (P = 0.016) and Type VI OI (P = 0.04) had significantly lower REE than HC. CONCLUSION Overall, patients with OI did not significantly differ in either extra-marrow adiposity or REE from BMI-similar HC. However, reduced REE among those with non-COL variants may contribute to greater adiposity.
Collapse
Affiliation(s)
- Kaitlin L Ballenger
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Nicol Tugarinov
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Sara K Talvacchio
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marianne M Knue
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - An N Dang Do
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Mark A Ahlman
- Radiology and Imaging Sciences, Clinical Research Center, National Institutes of Health, Bethesda, MD, USA
| | - James C Reynolds
- Radiology and Imaging Sciences, Clinical Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
- Correspondence: Joan C. Marini, MD, PhD, Head, Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, Bldg. 49, Rm. 5A52, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
22
|
Lykking EK, Kammerlander H, van Dijk FS, Prieto-Alhambra D, Abrahamsen B, Folkestad L. Fractures following pregnancy in Osteogenesis imperfecta - A self-controlled case series using Danish Health Registers. Bone 2022; 154:116177. [PMID: 34508880 DOI: 10.1016/j.bone.2021.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare inherited connective tissue disorder with considerable clinical and genetic heterogeneity. The clinical hallmark of OI is liability to fractures due to reduced bone strength. Pregnancy and lactation are periods of increased calcium demand resulting in a decrease in maternal bone mineral density (BMD). This self-controlled case series evaluates fracture risk 12- and 19-months prior to conception compared to a period of 12- and 19 months following childbirth in women with OI. This study is based on data from the Danish National Patient Register collected between 1995 and 2018. Modified Poisson models were fitted to estimate Incidence Rate Ratio in the post/pre-pregnancy period/s, adjusted by parity and age. The 12-month observation group included 111 women with 205 pregnancies, and the 19-month observation 108 women with 197 pregnancies. We calculated fracture rates (IR) of 48.78 [95%CI 18.55-79.01] per 1000 person years 12 months prior to conception, and of 27.87 [95%CI 10.60-45.14] in the 12 months post-delivery. Comparing pre- and post-pregnancy period we found an incidence rate ratio (IRR) of 1.00 [95%CI 0.42-2.40]. When adjusting for parity and age at delivery no significant change in the IRR was noted. In the 19 months observation-period, the IR per 1000 person years prior to conception was 74.84 [95%CI 44.25-105.43] and the IR postpartum was 36.86 [95%CI 17.55-56.17], leading to an IRR of 0.61 [95%CI 0.31-1.18]. We could not identify any increased risk of fractures when comparing fracture rates during pregnancy and 12 or 19 months postpartum to fracture rates 12 or 19 months prior to conception.
Collapse
Affiliation(s)
- Emilie Karense Lykking
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Institute of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Heidi Kammerlander
- Department of Gynecology and Obstetrics, Lillebælt Hospital Kolding, Denmark
| | - Fleur S van Dijk
- North West Thames Regional Genetics Service, London North West Health Care University NHS Trust, Harrow, UK; Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Bo Abrahamsen
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK; Department of Medicine, Holbæk Hospital, Holbæk, Denmark; Open Data Explorative Network, University of Southern Denmark, Odense, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 2021; 9:48. [PMID: 34759273 PMCID: PMC8580994 DOI: 10.1038/s41413-021-00170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Sonntag
- PolyGene AG, 8153, Rümlang, Switzerland.,ETH Phenomics Center (EPIC), ETH Zürich, 8092, Zürich, Switzerland
| | | | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131, Mainz, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, 50937, Cologne, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
24
|
Savige J, Storey H, Watson E, Hertz JM, Deltas C, Renieri A, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Lipska-Ziętkiewicz BS. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. Eur J Hum Genet 2021; 29:1186-1197. [PMID: 33854215 PMCID: PMC8384871 DOI: 10.1038/s41431-021-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3-5). It identified 'mutational hotspots' (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that 'well-established' functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common 'incidental' findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3-COL4A5 genes remains a challenge.
Collapse
Affiliation(s)
- Judy Savige
- grid.1008.90000 0001 2179 088XDepartment of Medicine (MH and NH), The University of Melbourne, Parkville, VIC Australia
| | - Helen Storey
- grid.239826.40000 0004 0391 895XMolecular Genetics, Viapath Laboratories, Guy’s Hospital, London, UK
| | - Elizabeth Watson
- Elizabeth Watson, South West Genomic Laboratory Hub, North Bristol Trust, Bristol, UK
| | - Jens Michael Hertz
- grid.7143.10000 0004 0512 5013Jens Michael Hertz, Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- grid.6603.30000000121167908Center of Excellence in Biobanking and Biomedical Research and Molecule Medicine Center, University of Cyprus, Nicosia, Cyprus
| | - Alessandra Renieri
- grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Mari
- Institute de Pathologie et de Genetique ASBL, Departement de Biologie Moleculaire, Gosselies, Belgium
| | - Pascale Hilbert
- Institute de Pathologie et de Genetique ASBL, Departement de Biologie Moleculaire, Gosselies, Belgium
| | - Pavlina Plevova
- grid.412727.50000 0004 0609 0692Department of Medical Genetics, and Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- grid.34477.330000000122986657Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, WA USA
| | - Agne Cerkauskaite
- grid.6441.70000 0001 2243 2806Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- grid.223827.e0000 0001 2193 0096Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, UT USA
| | - Rimante Cerkauskiene
- grid.6441.70000 0001 2243 2806Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- grid.412095.b0000 0004 0631 385XDepartment of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | - Francesca Becherucci
- grid.411477.00000 0004 1759 0844Nephrology Unit and Meyer Children’s University Hospital, Firenze, Italy
| | - Carmela Errichiello
- grid.411477.00000 0004 1759 0844Nephrology Unit and Meyer Children’s University Hospital, Firenze, Italy
| | - Laura Massella
- grid.414125.70000 0001 0727 6809Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Aiello
- grid.6292.f0000 0004 1757 1758Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- grid.5379.80000000121662407Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Louise Hopkinson
- grid.5379.80000000121662407Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ania Koziell
- grid.13097.3c0000 0001 2322 6764School of Immunology and Microbial Sciences, Faculty of Life Sciences, King’s College London, London, UK
| | - Adrian Lungu
- grid.415180.90000 0004 0540 9980Fundeni Clinical Institute, Pediatric Nephrology Department, Bucharest, Romania
| | | | - Julia Hoefele
- grid.6936.a0000000123222966Institute of Human Genetics, Technical University of Munich, München, Germany
| | | | - Tamara Nikuseva Martic
- grid.4808.40000 0001 0657 4636Department of Biology, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Asheeta Gupta
- grid.415246.00000 0004 0399 7272Birmingham Children’s Hospital, Birmingham, UK
| | - Albertien van Eerde
- grid.5477.10000000120346234Departments of Genetics and Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Samuela Landini
- grid.8404.80000 0004 1757 2304Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Viviana Palazzo
- grid.411477.00000 0004 1759 0844Medical Genetics Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laith al-Rabadi
- grid.223827.e0000 0001 2193 0096Health Sciences Centre, University of UTAH, Salt Lake City, UT USA
| | - Kathleen Claes
- grid.410569.f0000 0004 0626 3338Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- grid.410569.f0000 0004 0626 3338Center for Human Genetics, University Hospitals and KU Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- grid.410569.f0000 0004 0626 3338Center for Human Genetics, University Hospitals and KU Leuven, Leuven, Belgium
| | - Micheel van Geel
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- grid.416201.00000 0004 0417 1173Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Emma Ashton
- grid.420468.cNorth East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Hendica Belge
- grid.10417.330000 0004 0444 9382Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elisabeth Ars
- grid.7080.f0000 0001 2296 0625Inherited Kidney Disorders, Fundacio Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Agnieszka Bierzynska
- grid.5337.20000 0004 1936 7603Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Concetta Gangemi
- grid.411475.20000 0004 1756 948XDivision of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Beata S. Lipska-Ziętkiewicz
- grid.11451.300000 0001 0531 3426Centre for Rare Diseases, and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
25
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Testini V, Eusebi L, Tupputi U, Carpagnano FA, Bartelli F, Guglielmi G. Metabolic Bone Diseases in the Pediatric Population. Semin Musculoskelet Radiol 2021; 25:94-104. [PMID: 34020471 DOI: 10.1055/s-0040-1722566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bone plays an important role in regulating mineral balance in response to physiologic needs. In addition, bone is subject to a continuous remodeling process to maintain healthy bone mass and growth. Metabolic bone diseases are a heterogeneous group of diseases caused by abnormalities of bone mass, mineral structure homeostasis, bone turnover, or bone growth. In pediatrics, several significant advances have been made in recent years in the diagnosis of metabolic bone diseases (e.g., osteogenesis imperfecta, hyperparathyroidism, rickets, renal osteodystrophy, pediatric osteoporosis, and osteopetrosis). Imaging is fundamental in the diagnosis of these pathologies.
Collapse
Affiliation(s)
- Valentina Testini
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Laura Eusebi
- Radiology Unit, "Carlo Urbani" Hospital, Jesi, Italy
| | - Umberto Tupputi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | - Francesca Anna Carpagnano
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy
| | | | - Giuseppe Guglielmi
- Department of Clinical and Experimental Medicine, Foggia University School of Medicine, Foggia, Italy.,Radiology Unit, Barletta University Campus UNIFG, "Dimiccoli" Hospital, Barletta, Italy
| |
Collapse
|
27
|
Ramzan K, Alotaibi M, Huma R, Afzal S. Detection of a Recurrent TMEM38B Gene Deletion Associated with Recessive Osteogenesis Imperfecta. Discoveries (Craiova) 2021; 9:e124. [PMID: 34036147 PMCID: PMC8140756 DOI: 10.15190/d.2021.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Osteogenesis imperfecta is a clinically and genetically group of heterogeneous disorders associated with decreased bone density, brittle bones, bone deformity, recurrent fractures, and growth retardation. Osteogenesis imperfecta is commonly associated with mutations of the genes encoding for type I collagen (COL1A1/COL1A2). Mutations in other genes, some associated with type I collagen post-translational processing, have also been identified as the cause of osteogenesis imperfecta. Mutations in the transmembrane protein 38B (TMEM38B) gene have been reported in a rare autosomal recessive form of osteogenesis imperfecta. TMEM38B encodes TRIC-B - a trimeric intracellular cation channel type B which is essential to modulate intracellular calcium signaling. In this study, we are reporting a case of osteogenesis imperfecta type XIV from a Saudi consanguineous family. Our patient was an eight-month-old child with short limbs, club feet, and lower limb deformities with developmental delay. Radiological findings were consistent with the evidence of osteogenesis imperfecta. There was no evidence of impaired hearing or blue sclera and based on the clinical assessment, we classified our patient as a non-syndromic osteogenesis imperfecta. A pathogenic deletion in the chromosome 9q31.2 region, partially encompassing the TMEM38B gene, was detected using chromosomal microarray analysis. This study expands our knowledge about the rare type of osteogenesis imperfecta in our consanguineous population. Besides, it emphasizes the use of genomic medicine in clinical practices to formulate early interventions to clinically improve the patient’s condition.
Collapse
Affiliation(s)
- Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alotaibi
- Department of Genetics, Children's Hospital, King Saud Medical City, Riyadh, Saudi Arabia
| | - Rozeena Huma
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sibtain Afzal
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 2021; 117:104377. [PMID: 33636677 DOI: 10.1016/j.jmbbm.2021.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023]
Abstract
Osteogenesis imperfecta (OI), a brittle bone disease, is known to result in severe bone fragility. However, its ultrastructural origins are still poorly understood. In this study, we hypothesized that deficient intrafibrillar mineralization is a key contributor to the OI induced bone brittleness. To test this hypothesis, we explored the mechanical and ultrastructural changes in OI bone using the osteogenesis imperfecta murine (oim) model. Synchrotron X-ray scattering experiments indicated that oim bone had much less intrafibrillar mineralization than wild type bone, thus verifying that the loss of mineral crystals indeed primarily occurred in the intrafibrillar space of oim bone. It was also found that the mineral crystals were organized from preferentially in longitudinal axis in wild type bone to more randomly in oim bone. Moreover, it revealed that the deformation of mineral crystals was more coordinated with collagen fibrils in wild type than in oim bone, suggesting that the load transfer deteriorated between the two phases in oim bone. The micropillar test revealed that the compression work to fracture of oim bone (8.2 ± 0.9 MJ/m3) was significantly smaller (p < 0.05) than that of wild type bone (13.9 ± 2.7 MJ/m3), while the bone strength was not statistically different (p > 0.05) between the two genotype groups. In contrast, the uniaxial tensile test showed that the ultimate strength of wild type bone (50 ± 4.5 MPa) was significantly greater (p < 0.05) than that of oim bone (38 ± 5.3 MPa). Furthermore, the nanoscratch test showed that the toughness of oim bone was much less than that of wild type bone (6.6 ± 2.2 GJ/m3 vs. 12.6 ± 1.4 GJ/m3). Finally, in silico simulations using a finite element model of sub-lamellar bone confirmed the links between the reduced intrafibrillar mineralization and the observed changes in the mechanical behavior of OI bone. Taken together, these results provide important mechanistic insights into the underlying cause of poor mechanical quality of OI bone, thus pave the way toward future treatments of this brittle bone disease.
Collapse
Affiliation(s)
| | - Jitin Samuel
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abu Saleh Ahsan
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
29
|
Kantaputra PN, Dejkhamron P, Intachai W, Ngamphiw C, Ketudat Cairns JR, Kawasaki K, Ohazama A, Olsen B, Tongsima S, Angkurawaranon S. A novel P3H1 mutation is associated with osteogenesis imperfecta type VIII and dental anomalies. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:e198-e207. [PMID: 33737016 DOI: 10.1016/j.oooo.2021.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Our objective was to investigate the molecular etiology of osteogenesis imperfecta type VIII and dental anomalies in 4 siblings of a Karen tribe family. MATERIALS AND METHODS Four patients and their unaffected parents were studied by clinical and radiographic examination. In situ hybridization of P3h1 during early murine tooth development, whole-exome sequencing, and Sanger direct sequencing were performed. RESULTS A novel homozygous missense P3H1 mutation (NM_001243246.1; c.2141A>G; NP_001230175.1; p.Lys714Arg) was identified in all patients. Their unaffected parents were heterozygous for the mutation. The mutation is hypothesized to belong to isoform c of P3H1. Mutations in P3H1 are associated with autosomal recessive osteogenesis imperfecta type VIII. Hypodontia, a mesiodens, and single-rooted permanent second molars found in our patients have never been reported in patients with P3H1 mutations. Single-rooted second permanent molars or failure to form multiple roots implies effects of the P3H1 mutation on root development. CONCLUSIONS We report a novel P3H1 mutation as the underlying cause of osteogenesis imperfecta type VIII with dental anomalies. Our study suggests that isoform c of P3H1 is also a functional isoform of P3H1. We report, for the first time, to our knowledge, the association of P3H1 mutation and osteogenesis imperfecta type VIII with dental anomalies.
Collapse
Affiliation(s)
- Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University.
| | - Prapai Dejkhamron
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - James R Ketudat Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand; School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Salita Angkurawaranon
- Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chiang Mai University
| |
Collapse
|
30
|
Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020; 21:E9759. [PMID: 33371306 PMCID: PMC7767389 DOI: 10.3390/ijms21249759] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia;
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| |
Collapse
|
31
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
32
|
Skarp S, Xia JH, Zhang Q, Löija M, Costantini A, Ruddock LW, Mäkitie O, Wei GH, Männikkö M. Exome Sequencing Reveals a Phenotype Modifying Variant in ZNF528 in Primary Osteoporosis With a COL1A2 Deletion. J Bone Miner Res 2020; 35:2381-2392. [PMID: 32722848 PMCID: PMC7757391 DOI: 10.1002/jbmr.4145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
We studied a family with severe primary osteoporosis carrying a heterozygous p.Arg8Phefs*14 deletion in COL1A2, leading to haploinsufficiency. Three affected individuals carried the mutation and presented nearly identical spinal fractures but lacked other typical features of either osteogenesis imperfecta or Ehlers-Danlos syndrome. Although mutations leading to haploinsufficiency in COL1A2 are rare, mutations in COL1A1 that lead to less protein typically result in a milder phenotype. We hypothesized that other genetic factors may contribute to the severe phenotype in this family. We performed whole-exome sequencing in five family members and identified in all three affected individuals a rare nonsense variant (c.1282C > T/p.Arg428*, rs150257846) in ZNF528. We studied the effect of the variant using qPCR and Western blot and its subcellular localization with immunofluorescence. Our results indicate production of a truncated ZNF528 protein that locates in the cell nucleus as per the wild-type protein. ChIP and RNA sequencing analyses on ZNF528 and ZNF528-c.1282C > T indicated that ZNF528 binding sites are linked to pathways and genes regulating bone morphology. Compared with the wild type, ZNF528-c.1282C > T showed a global shift in genomic binding profile and pathway enrichment, possibly contributing to the pathophysiology of primary osteoporosis. We identified five putative target genes for ZNF528 and showed that the expression of these genes is altered in patient cells. In conclusion, the variant leads to expression of truncated ZNF528 and a global change of its genomic occupancy, which in turn may lead to altered expression of target genes. ZNF528 is a novel candidate gene for bone disorders and may function as a transcriptional regulator in pathways affecting bone morphology and contribute to the phenotype of primary osteoporosis in this family together with the COL1A2 deletion. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sini Skarp
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marika Löija
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Männikkö
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
de Souza LT, Nunes RR, de Azevedo Magalhães O, Maria Félix T. A new case of osteogenesis imperfecta type VIII and retinal detachment. Am J Med Genet A 2020; 185:238-241. [PMID: 33098264 DOI: 10.1002/ajmg.a.61934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 11/07/2022]
Abstract
Osteogenesis imperfecta (OI) type VIII (OMIM: 610915) is a rare autosomal recessive disorder characterized by white sclerae, severe growth deficiency, and bone fragility. This condition results from pathogenic variants of P3H1, a gene that codes for P3H1, an important protein involved in the prolyl-3-hydroxylation complex required for collagen type I folding. Here, we described a woman with OI type VIII due to a homozygous mutation of c.1914+1G>C (NM_001243246.1) in P3H1 and retinal detachment. We compared our case to five severe OI and retinal detachment cases reported in the literature. The only case previously reported with a molecular diagnosis had a similar mutation in P3H1 c.1914+1G>A and a giant retinal detachment. We suggest that individuals with OI type VIII should be submitted to careful fundoscopic examination.
Collapse
Affiliation(s)
- Liliane Todeschini de Souza
- Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Têmis Maria Félix
- Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
34
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Zhang B, Li R, Wang W, Zhou X, Luo B, Zhu Z, Zhang X, Ding A. The role of WNT1 mutant variant (WNT1 c.677C>T ) in osteogenesis imperfecta. Ann Hum Genet 2020; 84:447-455. [PMID: 32757296 PMCID: PMC7590185 DOI: 10.1111/ahg.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Osteogenesis imperfecta (OI), also known as "brittle bone disease," is a rare inherited genetic disorder characterized by bone fragility and often associated with short stature. The mutation in WNT1 causes autosomal recessive OI (AR-OI) due to the key role of WNT/β-catenin signaling in bone formation. WNT1 mutations cause phenotypes in OI of varying degrees of clinical severity, ranging from moderate to progressively deforming forms. The nucleotide change c.677C > T is one of the recurrent variants in the WNT1 alleles in Chinese AR-OI patients. To explore the effects of mutation c.677C > T on WNT1 function, we evaluated the activation of WNT/β-catenin signaling, cell proliferation, osteoblast differentiation, and osteoclast differentiation in WNT1c.677C>T , WNT1c.884C>A , and wild type WNT1 transfected into MC3T3-E1 preosteoblasts. Plasmids containing wild type WNT1, WNT1c.677C>T , and WNT1c.884C>A cDNAs were constructed. Protein levels of phosphorylation at serine 9 of GSK-3β (p-GSK-3β), GSK-3β, nonphosphorylated β-catenin (non-p-β-catenin), and β-catenin were detected with western blot. Cell proliferation was determined using MTS. BMP-2 and RANKL mRNA and protein levels were detected by qPCR and western blot. Our results showed that WNT1c.677C>T failed to activate WNT/β-catenin signaling and impaired the proliferation of preosteoblasts. Moreover, compared to wild type WNT1, WNT1c.677C>T downregulated BMP-2 protein expression and was exhibited a diminished capacity to suppress the RANKL protein level. In conclusion, mutation c.677C > T hindered the ability of WNT1 to induce the WNT/β-catenin signaling pathway and it affected the WNT/β-catenin pathway which might potentially contribute to hampered bone homeostasis.
Collapse
Affiliation(s)
- Bashan Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Rong Li
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Wenfeng Wang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xueming Zhou
- Department of Orthopedic, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Beijing Luo
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zinian Zhu
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xibo Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Aijiao Ding
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
36
|
Dubail J, Brunelle P, Baujat G, Huber C, Doyard M, Michot C, Chavassieux P, Khairouni A, Topouchian V, Monnot S, Koumakis E, Cormier-Daire V. Homozygous Loss-of-Function Mutations in CCDC134 Are Responsible for a Severe Form of Osteogenesis Imperfecta. J Bone Miner Res 2020; 35:1470-1480. [PMID: 32181939 DOI: 10.1002/jbmr.4011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is a primary bone fragility disorder with an estimated prevalence of 1 in 15,000 births. The majority of OI cases are inherited in an autosomal-dominant manner, while 5% to 10% have recessive or X-linked inheritance. Up to now, approximately 5% of OI cases remain without mutation demonstrated, supporting the involvement of other genes in the disease spectrum. By whole-exome sequencing, we identified a homozygous variant (c.2T>C) in CCDC134 gene in three patients from two unrelated families with severe bone fragility that did not respond to bisphosphonate treatment, short stature, and gracile long bones with pseudarthroses but no dentinogenesis imperfecta. CCDC134 encodes a secreted protein widely expressed and implicated in the regulation of some mitogen-activated protein kinases (MAPK) signaling pathway. Western blot and immunofluorescence analyses confirmed the absence of CCDC134 protein in patient cells compared with controls. Furthermore, we demonstrated that CCDC134 mutations are associated with increased Erk1/2 phosphorylation, decreased OPN mRNA and COL1A1 expression and reduced mineralization in patient osteoblasts compared with controls. These data support that CCDC134 is a new gene involved in severe progressive deforming recessive osteogenesis imperfecta (type III). © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Perrine Brunelle
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Geneviève Baujat
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Céline Huber
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Mathilde Doyard
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Caroline Michot
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | | | | | - Vicken Topouchian
- Pediatrics Orthopedics Department, Necker-Enfants Malade Hospital, Paris Descartes University, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Monnot
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| | - Eugénie Koumakis
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France.,Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, Reference Center for Rare Genetic Bone Disorders-Cochin-Constitutive Site, Paris, France
| | - Valérie Cormier-Daire
- Department of Clinical Genetics and Reference Centre for Constitutional Bone Diseases, INSERM U1163, Université de Paris, Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, F-75015, Paris, France
| |
Collapse
|
37
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. A molecular dynamics approach on the Y393C variant of protein disulfide isomerase A1. Chem Biol Drug Des 2020; 96:1341-1347. [PMID: 32352225 DOI: 10.1111/cbdd.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Human protein disulfide isomerase A1 (PDIA1) shows both catalytic (i.e., oxidoreductase) and non-catalytic (i.e., chaperone) activities and plays a crucial role in the oxidative folding of proteins within the endoplasmic reticulum. PDIA1 dysregulation is a common trait in numerous pathophysiological conditions, including neurodegenerative disorders and cancerous diseases. The 1178A>G mutation of the human PDIA1-encoding gene is a non-synonymous single nucleotide polymorphism detected in patients with Cole-Carpenter syndrome type 1 (CSS1), a particularly rare bone disease. In vitro studies showed that the encoded variant (PDIA1 Y393C) exhibits limited oxidoreductase activity. To gain knowledge on the structure-function relationship, we undertook a molecular dynamics (MD) approach to examine the structural stability of PDIA1 Y393C. Results showed that significant conformational changes are the structural consequence of the amino acid substitution Tyr>Cys at position 393 of the PDIA1 protein. This structure-based study provides further knowledge about the molecular origin of CCS1.
Collapse
Affiliation(s)
- Pablo A Madero-Ayala
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Rosa E Mares-Alejandre
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| | - Marco A Ramos-Ibarra
- Grupo de Investigación en Biotecnología y Biociencias, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, México
| |
Collapse
|
39
|
Li Y, Liang H, Yuan D, Liu B, Liu L, Zhang Y, Hou K, Zhang Y, Chen B, Ding J, Li Y, Wang Q, Wu H, Shi H, Hu M. A novel mutation combining with rs66612022 in a Chinese pedigree suggests a new pathogenesis to osteogenesis imperfecta via whole genome sequencing. Ann Hum Genet 2019; 84:339-344. [PMID: 31853946 DOI: 10.1111/ahg.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable disease with systemic connective tissue disorder. Most of the patients represent autosomal dominant form of OI, and are usually resulting from the mutations in type I collagen genes. However, the gene mutations reported previously only account for ∼70% of the OI cases. Here, in a Chinese OI family, we examined seven patients and nine normal individuals using the whole genome sequencing and molecular genetic analysis. The mutation of rs66612022 (COL1A2:p.Gly328Ser) related to glycine substitution was found in the seven patients. Moreover, we identified a novel missense mutation (HMMR:p.Glu2Gln). Interestingly, the individuals of this family with both the mutations were suffering from OI, while the others carried one or none of them are normal. The mutations of COL1A2 and HMMR and their combined effect on OI would further expand the genetic spectrum of OI.
Collapse
Affiliation(s)
- Yanjiao Li
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases &Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan, China
| | - Hongsuo Liang
- Joint Surgery Department of the Second People's Hospital of Nanning City, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dekai Yuan
- Kunming University School of Medicine, Kunming University, Kunming, Yunnan, China
| | - Baoling Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Liu
- Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yongfa Zhang
- The first people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kaiyu Hou
- The second people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yunchao Zhang
- The third people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Bin Chen
- Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Jing Ding
- Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Yunxia Li
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qilin Wang
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haiying Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Shi
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Hu
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases &Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
40
|
Constantino CS, Krzak JJ, Fial AV, Kruger KM, Rammer JR, Radmanovic K, Smith PA, Harris GF. Effect of Bisphosphonates on Function and Mobility Among Children With Osteogenesis Imperfecta: A Systematic Review. JBMR Plus 2019; 3:e10216. [PMID: 31687649 PMCID: PMC6820458 DOI: 10.1002/jbm4.10216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic connective tissue disorder that results in bone fragility and deformity. Management is multi-disciplinary. Although pharmacologic intervention with bisphosphonates (BP) is a standard of care for individuals with severe OI, no consensus or reviews were found that focus on the effects of bisphosphonates on function and mobility. PubMed, CINAHL, Cochrane Library, Web of Science, and PEDro databases were searched for eligible articles for this review. Methodological quality was assessed using the Cochrane Collaboration's tool for risk of bias. Twenty-six studies (801 children) were reviewed and five showed a low risk of bias. Included studies showed significant variability among clinical protocols for administering BP. Randomized controlled trials did not demonstrate a significant improvement in function and mobility with oral BP administration, while non-randomized open-label uncontrolled studies demonstrated that oral and intravenous BP administration objectively improved function and mobility. The most common outcome measure used by the studies included in this review was the Bleck score. Effect sizes (d = 0.28 - 4.5) varied among studies. This systematic review also summarized the apparent confounding variables affecting results of previous studies and provided suggestions to improve the quality of future studies.
Collapse
Affiliation(s)
- Christopher S. Constantino
- Orthopedic and Rehabilitation Engineering Center, Marquette University & Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Joseph J. Krzak
- Motion Analysis Laboratory, Shriners Hospital for ChildrenChicagoIllinoisUSA
- Midwestern University, Physical Therapy Program, College of Health SciencesDowners GroveIllinoisUSA
| | - Alissa V. Fial
- Research and Instructional Services, Raynor Memorial Libraries, Marquette UniversityMilwaukeeWisconsinUSA
| | - Karen M. Kruger
- Orthopedic and Rehabilitation Engineering Center, Marquette University & Medical College of WisconsinMilwaukeeWisconsinUSA
- Motion Analysis Laboratory, Shriners Hospital for ChildrenChicagoIllinoisUSA
| | - Jacob R. Rammer
- Orthopedic and Rehabilitation Engineering Center, Marquette University & Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Katarina Radmanovic
- Orthopedic and Rehabilitation Engineering Center, Marquette University & Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Peter A. Smith
- Motion Analysis Laboratory, Shriners Hospital for ChildrenChicagoIllinoisUSA
| | - Gerald F. Harris
- Orthopedic and Rehabilitation Engineering Center, Marquette University & Medical College of WisconsinMilwaukeeWisconsinUSA
- Motion Analysis Laboratory, Shriners Hospital for ChildrenChicagoIllinoisUSA
| |
Collapse
|
41
|
Wu J, Zhang W, Xia L, Feng L, Shu Z, Zhang J, Ye W, Zeng N, Zhou A. Characterization of PPIB interaction in the P3H1 ternary complex and implications for its pathological mutations. Cell Mol Life Sci 2019; 76:3899-3914. [PMID: 30993352 PMCID: PMC11105654 DOI: 10.1007/s00018-019-03102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
The P3H1/CRTAP/PPIB complex is essential for prolyl 3-hydroxylation and folding of procollagens in the endoplasmic reticulum (ER). Deficiency in any component of this ternary complex is associated with the misfolding of collagen and the onset of osteogenesis imperfecta. However, little structure information is available about how this ternary complex is assembled and retained in the ER. Here, we assessed the role of the KDEL sequence of P3H1 and probed the spatial interactions of PPIB in the complex. We show that the KDEL sequence is essential for retaining the P3H1 complex in the ER. Its removal resulted in co-secretion of P3H1 and CRTAP out of the cell, which was mediated by the binding of P3H1 N-terminal domain with CRTAP. The secreted P3H1/CRTAP can readily bind PPIB with their C-termini close to PPIB in the ternary complex. Cysteine modification, crosslinking, and mass spectrometry experiments identified PPIB surface residues involved in the complex formation, and showed that the surface of PPIB is extensively covered by the binding of P3H1 and CRTAP. Most importantly, we demonstrated that one disease-associated pathological PPIB mutation on the binding interface did not affect the PPIB prolyl-isomerase activity, but disrupted the formation of P3H1/CRTAP/PPIB ternary complex. This suggests that defects in the integrity of the P3H1 ternary complex are associated with pathological collagen misfolding. Taken together, these results provide novel structural information on how PPIB interacts with other components of the P3H1 complex and indicate that the integrity of P3H1 complex is required for proper collagen formation.
Collapse
Affiliation(s)
- Jiawei Wu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenting Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingling Feng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zimei Shu
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Zhang
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Ye
- Department of Preventive Dentistry, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Naiyan Zeng
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
42
|
Zhytnik L, Maasalu K, Duy BH, Pashenko A, Khmyzov S, Reimann E, Prans E, Kõks S, Märtson A. IFITM5 pathogenic variant causes osteogenesis imperfecta V with various phenotype severity in Ukrainian and Vietnamese patients. Hum Genomics 2019; 13:25. [PMID: 31159867 PMCID: PMC6547447 DOI: 10.1186/s40246-019-0209-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) covers a spectrum of bone fragility disorders. OI is classified into five types; however, the genetic causes of OI might hide in pathogenic variants of 20 different genes. Often clinical OI types mimic each other. This sometimes makes it impossible to identify the OI type clinically, which can be a risk for patients. Up to 90% of OI types I-IV are caused by pathogenic variants in the COL1A1/2 genes. OI type V is caused by the c.-14C > T pathogenic variant in the 5'UTR of the IFITM5 gene and is characterized by hyperplastic callus formation and the ossification of interosseous membranes. RESULTS In the current study, we performed IFITM5 5'UTR region mutational analysis using Sanger sequencing on 90 patients who were negative for COL1A1/2 pathogenic variants. We also investigated the phenotypes of five patients with genetically confirmed OI type V. The proportion of OI type V patients in our cohort of all OI patients was 1.48%. In one family, there was a history of OI in at least three generations. Phenotype severity differed from mild to extremely severe among patients, but all patients harbored the same typical pathogenic variant. One patient had no visible symptoms of OI type V and was suspected to have had OI type IV previously. We also identified a case of extremely severe hyperplastic callus in a 15-year-old male, who has hearing loss and brittleness of teeth. CONCLUSIONS OI type V is underlined with some unique clinical features; however, not all patients develop them. The phenotype spectrum might be even broader than previously suspected, including typical OI features: teeth brittleness, bluish sclera, hearing loss, long bones deformities, and joint laxity. We suggest that all patients negative for COL1A1/2 pathogenic variants be tested for the presence of an IFITM5 pathogenic variant, even if they are not expressing typical OI type V symptoms. Further studies on the pathological nature and hyperplastic callus formation mechanisms of OI type V are necessary.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.,Clinic of Traumatology and Orthopeadics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
| | - Binh Ho Duy
- Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Andrey Pashenko
- Department of Pediatric Orthopedics, Sytenko Institute of Spine and Joint Pathology, AMS Ukraine, Pushkinska 80, Kharkiv, 61024, Ukraine
| | - Sergey Khmyzov
- Department of Pediatric Orthopedics, Sytenko Institute of Spine and Joint Pathology, AMS Ukraine, Pushkinska 80, Kharkiv, 61024, Ukraine
| | - Ene Reimann
- Centre of Translational Medicine, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.,Department of Pathophysiology, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.,Clinic of Traumatology and Orthopeadics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
| |
Collapse
|
43
|
Song Y, Zhao D, Li L, Lv F, Wang O, Jiang Y, Xia W, Xing X, Li M. Health-related quality of life in children with osteogenesis imperfecta: a large-sample study. Osteoporos Int 2019; 30:461-468. [PMID: 30569229 DOI: 10.1007/s00198-018-4801-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
UNLABELLED In this large-sample study, we demonstrated that osteogenesis imperfecta (OI) significantly impaired the quality of life (QoL) in children. Moderate/severe OI patients had worse QoL scores than patients with mild OI. Furthermore, the QoL for OI patients was correlated with the presence of pathogenic gene mutations. INTRODUCTION Osteogenesis imperfecta (OI) is a hereditary disease characterized by multiple fragility fractures and progressive skeletal deformities. No detailed investigations about the quality of life (QoL) have been carried out in a large sample of patients with OI. We evaluated the QoL and its influencing factors in a large and well-characterized OI cohort. METHODS We used a validated questionnaire of PedsQL 4.0 to evaluate the health-related quality of life (HRQoL) of children and adolescents with OI. We compared HRQoL among patients with OI types I, III, and IV. The relationship between HRQoL and pathogenic mutations in candidate OI genes was investigated. We also evaluated the influencing factors of HRQoL in OI patients. RESULTS A total of 138 children with OI and 138 healthy controls were enrolled in this study. The HRQoL scores of OI patients were 64.4 ± 30.0, 71.9 ± 22.2, 75.7 ± 24.8, 63.7 ± 24.5, and 68.9 ± 22.0 in physical, emotional, social, school functioning, and total score, respectively, which were significantly lower than those of healthy children (86.5 ± 12.7, 83.3 ± 16.0, 92.1 ± 11.8, 87.5 ± 11.8, and 87.3 ± 10.7, all p < 0.01). Moderate and severe OI (type III/IV) patients had poorer HRQoL scores than patients with mild OI (type I). Gene mutations inducing qualitative defects in type I collagen led to worse HRQoL scores than those with quantitative defects in type I collagen, except in emotional functioning. The total HRQoL score was positively correlated with family income, lumbar, and femoral bone mineral density (BMD) Z-scores and negatively correlated with disease severity and fracture frequency. CONCLUSION HRQoL was significantly impaired in OI patients, and patients with more severe OI had poorer HRQoL scores. For the first time, we found that children with qualitative defects in type I collagen had poorer HRQoL scores than those with quantitative defects in type I collagen.
Collapse
Affiliation(s)
- Y Song
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - D Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - L Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - F Lv
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
44
|
Doan ND, DiChiara AS, Del Rosario AM, Schiavoni RP, Shoulders MD. Mass Spectrometry-Based Proteomics to Define Intracellular Collagen Interactomes. Methods Mol Biol 2019; 1944:95-114. [PMID: 30840237 DOI: 10.1007/978-1-4939-9095-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present the development, optimization, and application of constructs, cell lines, covalent cross-linking methods, and immunoprecipitation strategies that enable robust and accurate determination of collagen interactomes via mass spectrometry-based proteomics. Using collagen type-I as an example, protocols for working with large, repetitive, and GC-rich collagen genes are described, followed by strategies for engineering cells that stably and inducibly express antibody epitope-tagged collagen-I. Detailed steps to optimize collagen interactome cross-linking and perform immunoprecipitations are then presented. We conclude with a discussion of methods to elute collagen interactomes and prepare samples for mass spectrometry-mediated identification of interactors. Throughout, caveats and potential problems researchers may encounter when working with collagen are discussed. We note that the protocols presented herein may be readily adapted to define interactomes of other collagen types, as well as to determine comparative interactomes of normal and disease-causing collagen variants using quantitative isotopic labeling (SILAC)- or isobaric mass tags (iTRAQ or TMT)-based mass spectrometry analysis.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
|
46
|
el Demellawy D, Davila J, Shaw A, Nasr Y. Brief Review on Metabolic Bone Disease. Acad Forensic Pathol 2018; 8:611-640. [PMID: 31240061 PMCID: PMC6490580 DOI: 10.1177/1925362118797737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/21/2018] [Indexed: 01/17/2023]
Abstract
Metabolic bone disease (MBD) is a broad term that describes a clinically heterogeneous group of diseases that are only united by a common denominator of an aberrant bone chemical milieu leading to a defective skeleton and bone abnormalities. From a forensic pathologist's perspective, MBDs create a challenging diagnostic dilemma in differentiating them from child abuse, particularly when the victim is an infant. Through this brief narrative review on MBD, bone pathophysiology and two relatively challenging pediatric MBDs will be discussed.
Collapse
Affiliation(s)
- Dina el Demellawy
- Dina el Demellawy MD PhD FRCPC, 401 Smyth Rd, Pathology Department, Ottawa ON K1H 8L1,
| | | | | | | |
Collapse
|
47
|
Rodriguez Celin M, Moosa S, Fano V. Uncommon
IFITM5
mutation associated with severe skeletal deformity in osteogenesis imperfecta. Ann Hum Genet 2018; 82:477-481. [DOI: 10.1111/ahg.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 01/02/2023]
Affiliation(s)
| | - Shahida Moosa
- University Medical Center Göttingen Göttingen Germany
| | - Virginia Fano
- Growth and development Service Garrahan Pediatric Hospital Buenos Aires Argentina
| |
Collapse
|
48
|
Nardi F, Fitchev P, Franco OE, Ivanisevic J, Scheibler A, Hayward SW, Brendler CB, Welte MA, Crawford SE. PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer-associated fibroblasts. J Cell Sci 2018; 131:jcs.213579. [PMID: 29792311 DOI: 10.1242/jcs.213579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Jelena Ivanisevic
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Adrian Scheibler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Simon W Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Charles B Brendler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| |
Collapse
|
49
|
Lu Y, Kamel-El Sayed SA, Wang K, Tiede-Lewis LM, Grillo MA, Veno PA, Dusevich V, Phillips CL, Bonewald LF, Dallas SL. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs. J Bone Miner Res 2018; 33:1166-1182. [PMID: 29461659 PMCID: PMC6425932 DOI: 10.1002/jbmr.3409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 11/12/2022]
Abstract
Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246
| | - Suzan A. Kamel-El Sayed
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Biomedical Sciences Department, Oakland University William Beaumont School of Medicine, 414 O’Dowd Hall, Rochester MI, 48309
- Medical Physiology Department, Assiut University School of Medicine 71516, Asyut, Egypt
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Michael A. Grillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Patricia A. Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| | - Charlotte L. Phillips
- Departments of Biochemistry and Child Health, University of Missouri Columbia, 117 Schweitzer Hall, Columbia, MO 65211
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
- Departments of Anatomy and Cell Biology and Orthopaedic Surgery, Indiana University, Indianapolis, IN 46202
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, 650 E. 25 Street, Kansas City, MO 64108
| |
Collapse
|
50
|
Song Y, Zhao D, Xu X, Lv F, Li L, Jiang Y, Wang O, Xia W, Xing X, Li M. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X. Osteoporos Int 2018. [PMID: 29520608 DOI: 10.1007/s00198-018-4448-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. INTRODUCTION Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. METHODS We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. RESULTS The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. CONCLUSION We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.
Collapse
Affiliation(s)
- Y Song
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - D Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - X Xu
- Department of Endocrinology, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, 100035, China
| | - F Lv
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - L Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|