1
|
Medel MLH, Reyes GG, Porras LM, Bernal AR, Luna JS, Garcia AP, Cordova J, Parra A, Mummidi S, Kershenobich D, Hernández J. Prolactin Induces IL-2 Associated TRAIL Expression on Natural Killer Cells from Chronic Hepatitis C Patients In vivo and In vitro. Endocr Metab Immune Disord Drug Targets 2020; 19:975-984. [PMID: 30520386 DOI: 10.2174/1871530319666181206125545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Natural killer cells (NKC) are a major component of the innate immune response to HCV, mediating their effects through TRAIL and IFN-γ. However, their function is diminished in chronic HCV patients (HCVp). Prolactin is an immunomodulatory hormone capable of activating NKC. OBJECTIVE The study aims to explore if hyperprolactinemia can activate NKC in HCVp. METHODS We treated twelve chronic HCVp (confidence level =95%, power =80%) for 15 days with Levosulpiride plus Cimetidine to induce mild hyperprolactinemia. Before and after treatment, we determined TRAIL and NKG2D expression on peripheral blood NKC, along with cytokine profiles, viral loads and liver function. We also evaluated in vitro effects of prolactin and/or IL-2 on NKC TRAIL or NKG2D expression and IFN-γ levels on cultured blood mononuclear cells from 8 HCVp and 7 healthy controls. RESULTS The treatment induced mild hyperprolactinemia and increased TRAIL expression on NKC as well as the secretion of IL-1ra, IL-2, PDGF and IFN-γ. Viral loads decreased in six HCVp. IL-2 and TRAIL together explained the viral load decrease. In vitro, prolactin plus IL-2 synergized to increase TRAIL and NKG2D expression on NKC from HCVp but not in controls. CONCLUSION Levosulpiride/Cimetidine treatment induced mild hyperprolactinaemia that was associated with NKC activation and Th1-type cytokine profile. Also, an increase in TRAIL and IL-2 was associated with viral load decrease. This treatment could potentially be used to reactivate NKC in HCVp.
Collapse
Affiliation(s)
- Maria L H Medel
- Infectology Service, General Hospital of Mexico Dr. "Eduardo Liceaga", Mexico City, Mexico
| | - Gabriela G Reyes
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Luz M Porras
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Arturo R Bernal
- Directorate of Research, General Hospital of Mexico Dr. Eduardo Liceaga ", Mexico City, Mexico
| | - Jesús S Luna
- Department of Cell Biology, IPN Research and Advanced Studies Center, Mexico City, Mexico
| | - Adolfo P Garcia
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico
| | - Jacqueline Cordova
- Directorate of Research, General Hospital of Mexico Dr. Eduardo Liceaga ", Mexico City, Mexico
| | - Adalberto Parra
- Department of Endocrinology, National Institute of Perinatology "Isidro Espinosa de los Reyes ", Mexico City, Mexico
| | - Srinivas Mummidi
- South Texas Diabetes & Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States
| | - David Kershenobich
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, Mexico
| | - Joselín Hernández
- Liver, Pancreas and Motility Laboratory (HIPAM) - Experimental Medicine Research Unit, Faculty of Medicine, Mexico City, Mexico.,South Texas Diabetes & Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, United States.,Clinical Pharmacology Unit, General Hospital of Mexico Dr. "Eduardo Liceaga", Mexico City, Mexico
| |
Collapse
|
2
|
Nakano T, Chen IH, Wang CC, Chen PJ, Tseng HP, Huang KT, Hu TH, Li LC, Goto S, Cheng YF, Lin CC, Chen CL. Circulating exosomal miR-92b: Its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am J Transplant 2019; 19:3250-3262. [PMID: 31162867 DOI: 10.1111/ajt.15490] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/25/2023]
Abstract
A recurrence of hepatocellular carcinoma (HCC) after living donor liver transplantation (LDLT) is one of the major concerns reflecting the higher mortality of HCC. This study aimed to explore the impact of circulating exosomes on HCC development and recurrence. One-shot transfusion of hepatoma serum to naïve rats induced liver cancer development with gradual elevation of alpha-fetoprotein (AFP), but exosome-free hepatoma serum failed to induce AFP elevation. The microarray analysis revealed miR-92b as one of the highly expressing microribonucleic acids in hepatoma serum exosomes. Overexpression of miR-92b enhanced the migration ability of liver cancer cell lines with active release of exosomal miR-92b. The hepatoma-derived exosomal miR-92b transferred to natural killer (NK) cells, resulting in the downregulation of CD69 and NK cell-mediated cytotoxicity. Furthermore, higher expression of miR-92b in serum exosomes was confirmed in HCC patients before LDLT, and its value at 1 month after LDLT was maintained at a higher level in the patients with posttransplant HCC recurrence. In summary, we demonstrated the impact of circulating exosomes on liver cancer development, partly through the suppression of CD69 on NK cells by hepatoma-derived exosomal miR-92b. The value of circulating exosomal miR-92b may predict the risk of posttransplant HCC recurrence.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Hsuan Chen
- Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Chi Wang
- Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Po-Jung Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Peng Tseng
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Tzu Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Liver Transplantation Center and Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Lung-Chih Li
- Liver Transplantation Center and Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, Nobeoka, Miyazaki, Japan.,Faculty of Nursing, Department of Nursing, Josai International University, Togane, Chiba, Japan
| | - Yu-Fan Cheng
- Liver Transplantation Center and Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center and Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Hwang S, Han J, Baek JS, Tak E, Song GW, Lee SG, Jung DH, Park GC, Ahn CS, Kim N. Cytotoxicity of Human Hepatic Intrasinusoidal CD56 bright Natural Killer Cells against Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20071564. [PMID: 30925759 PMCID: PMC6480584 DOI: 10.3390/ijms20071564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic intrasinusoidal (HI) natural killer (NK) cells from liver perfusate have unique features that are similar to those of liver-resident NK cells. Previously, we have reported that HI CD56bright NK cells effectively degranulate against SNU398 hepatocellular carcinoma (HCC) cells. Thus, the aim of this study was to further investigate the phenotype and function of HI NK cells. We found that HI CD56bright NK cells degranulated much less to Huh7 cells. HI CD56bright NK cells expressed NKG2D, NKp46, TNF-related apoptosis-inducing ligand (TRAIL), and FAS ligand (FASL) at higher levels than CD56dim cells. SNU398 cells expressed more NKG2D ligands and FAS and less PD-L1 than Huh7 cells. Blockade of NKG2D, TRAIL, and FASL significantly reduced the cytotoxicity of HI NK cells against SNU398 cells, but blockade of PD-L1 did not lead to any significant change. However, HI NK cells produced IFN-γ well in response to Huh7 cells. In conclusion, the cytotoxicity of HI CD56bright NK cells was attributed to the expression of NKG2D, TRAIL, and FASL. The results suggest the possible use of HI NK cells for cancer immunotherapy and prescreening of HCC cells to help identify the most effective NK cell therapy recipients.
Collapse
Affiliation(s)
- Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jaeseok Han
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Ji-Seok Baek
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Chul-Soo Ahn
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Nayoung Kim
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
4
|
Sung PS, Jang JW. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int J Mol Sci 2018; 19:ijms19113648. [PMID: 30463262 PMCID: PMC6274919 DOI: 10.3390/ijms19113648] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is currently the third leading cause of malignancy-related mortalities worldwide. Natural killer (NK) cells are involved in the critical role of first line immunological defense against cancer development. Defects in NK cell functions are recognized as important mechanisms for immune evasion of tumor cells. NK cell function appears to be attenuated in HCC, and many previous reports suggested that NK cells play a critical role in controlling HCC, suggesting that boosting the activity of dysfunctional NK cells can enhance tumor cell killing. However, the detailed mechanisms of NK cell dysfunction in tumor microenvironment of HCC remain largely unknown. A better understanding of the mechanisms of NK cell dysfunction in HCC will help in the NK cell-mediated eradication of cancer cells and prolong patient survival. In this review, we describe the various mechanisms underlying human NK cell dysfunction in HCC. Further, we summarize current advances in the approaches to enhance endogenous NK cell function and in adoptive NK cell therapies, to cure this difficult-to-treat cancer.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jeong Won Jang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- The Catholic Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
5
|
Xie S, Wu Z, Zhou L, Liang Y, Wang X, Niu L, Xu K, Chen J, Zhang M. Iodine-125 seed implantation and allogenic natural killer cell immunotherapy for hepatocellular carcinoma after liver transplantation: a case report. Onco Targets Ther 2018; 11:7345-7352. [PMID: 30498359 PMCID: PMC6207256 DOI: 10.2147/ott.s166962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For advanced hepatocellular carcinoma (HCC) patients, liver transplantation (LT) is an optimal treatment with limitation of high risk of tumor recurrence related to the immunosuppressive chemotherapy as usually recommended. In this study, a 29-year-old man suffered from HCC recurrence after LT. He underwent radiotherapy (total dose: 45 Gy) but had no significant response. Then, he received iodine-125 seed implantation combined with allogenic natural killer (NK) cell immunotherapy. Liver function, immune function, circulating tumor cell counts and computed tomography scans were evaluated to determine the clinical effect. We found that this combined treatment produced enhanced immune function of the patient and reduction in tumor size. This is the first report of an efficacy and safety study about clinical regimen comprising allogenic NK cell immunotherapy combined with iodine-125 seed implantation for the treatment of HCC recurrence after LT.
Collapse
Affiliation(s)
- Silun Xie
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| | - Zhengyi Wu
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| | - Liang Zhou
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Yingqing Liang
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Xiaohua Wang
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Lizhi Niu
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Kecheng Xu
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Jibing Chen
- Department of Central Laboratory, Fuda Cancer Hospital of Jinan University, Guangzhou 510665, China,
| | - Mingjie Zhang
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen 518004, China,
| |
Collapse
|
6
|
Mukaida N, Nakamoto Y. Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma. World J Gastroenterol 2018; 24:1839-1858. [PMID: 29740200 PMCID: PMC5937202 DOI: 10.3748/wjg.v24.i17.1839] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor immunity proceeds through multiple processes, which consist of antigen presentation by antigen presenting cells (APCs) to educate effector cells and destruction by the effector cytotoxic cells. However, tumor immunity is frequently repressed at tumor sites. Malignantly transformed cells rarely survive the attack by the immune system, but cells that do survive change their phenotypes to reduce their immunogenicity. The resultant cells evade the attack by the immune system and form clinically discernible tumors. Tumor microenvironments simultaneously contain a wide variety of immune suppressive molecules and cells to dampen tumor immunity. Moreover, the liver microenvironment exhibits immune tolerance to reduce aberrant immune responses to massively-exposed antigens via the portal vein, and immune dysfunction is frequently associated with liver cirrhosis, which is widespread in hepatocellular carcinoma (HCC) patients. Immune therapy aims to reduce tumor burden, but it is also expected to prevent non-cancerous liver lesions from progressing to HCC, because HCC develops or recurs from non-cancerous liver lesions with chronic inflammatory states and/or cirrhosis and these lesions cannot be cured and/or eradicated by local and/or systemic therapies. Nevertheless, cancer immune therapy should augment specific tumor immunity by using two distinct measures: enhancing the effector cell functions such as antigen presentation capacity of APCs and tumor cell killing capacity of cytotoxic cells, and reactivating the immune system in immune-suppressive tumor microenvironments. Here, we will summarize the current status and discuss the future perspective on immune therapy for HCC.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigens, Neoplasm/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Humans
- Immune Tolerance/genetics
- Immunotherapy/methods
- Immunotherapy/trends
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocyte Activation/genetics
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Ishikawa, Kanazawa 920-1192, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| |
Collapse
|
7
|
Lasfar A, de laTorre A, Abushahba W, Cohen-Solal KA, Castaneda I, Yuan Y, Reuhl K, Zloza A, Raveche E, Laskin DL, Kotenko SV. Concerted action of IFN-α and IFN-λ induces local NK cell immunity and halts cancer growth. Oncotarget 2018; 7:49259-49267. [PMID: 27363032 PMCID: PMC5226505 DOI: 10.18632/oncotarget.10272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. No significant improvement has been reported with currently available systemic therapies. IFN-α has been tested in both clinic and animal models and only moderate benefits have been observed. In animal models, similar modest antitumor efficacy has also been reported for IFN-λ, a new type of IFN that acts through its own receptor complex. In the present study, the antitumor efficacy of the combination of IFN-α and IFN-λ was tested in the BNL mouse hepatoma model. This study was accomplished by using either engineered tumor cells (IFN-α/IFN-λ gene therapy) or by directly injecting tumor-bearing mice with IFN-α/IFN-λ. Both approaches demonstrated that IFN-α/IFN-λ combination therapy was more efficacious than IFN monotherapy based on either IFN-α or IFN-λ. In complement to tumor surgery, IFN-α/IFN-λ combination induced complete tumor remission. Highest antitumor efficacy has been obtained following local administration of IFN-α/IFN-λ combination at the tumor site that was associated with strong NK cells tumor infiltration. This supports the use of IFN-α/IFN-λ combination as a new cancer immunotherapy for stimulating antitumor response after cancer surgery.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Andrew de laTorre
- Department of Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.,St Joseph's Medical Center, Paterson, NJ, USA
| | - Walid Abushahba
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, University Hospital Cancer Center, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| | - Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Section of Surgical Oncology Research, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ismael Castaneda
- Department of Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yao Yuan
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Section of Surgical Oncology Research, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth Raveche
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Immunity and Inflammation, University Hospital Cancer Center, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
8
|
Yu M, Luo H, Fan M, Wu X, Shi B, Di S, Liu Y, Pan Z, Jiang H, Li Z. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Mol Ther 2018; 26:366-378. [PMID: 29339014 PMCID: PMC5835122 DOI: 10.1016/j.ymthe.2017.12.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified natural killer (NK) cells represent a promising immunotherapeutic modality for cancer treatment. However, their potential utilities have not been explored in hepatocellular carcinoma (HCC). Glypian-3 (GPC3) is a rational immunotherapeutic target for HCC. In this study, we developed GPC3-specific NK cells and explored their potential in the treatment of HCC. The NK-92/9.28.z cell line was established by engineering NK-92, a highly cytotoxic NK cell line with second-generation GPC3-specific CAR. Exposure of GPC3+ HCC cells to this engineered cell line resulted in significant in vitro cytotoxicity and cytokine production. In addition, soluble GPC3 and TGF-β did not significantly inhibit the cytotoxicity of NK-92/9.28.z cells in vitro, and no significant difference in anti-tumor activities was observed in hypoxic (1%) conditions. Potent anti-tumor activities of NK-92/9.28.z cells were observed in multiple HCC xenografts with both high and low GPC3 expression, but not in those without GPC3 expression. Obvious infiltration of NK-92/9.28.z cells, decreased tumor proliferation, and increased tumor apoptosis were observed in the GPC3+ HCC xenografts. Similarly, efficient retargeting on primary NK cells was achieved. These results justified clinical translation of this GPC3-specific, NK cell-based therapeutic as a novel treatment option for patients with GPC3+ HCC.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengmeng Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyan Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CARsgen Therapeutics, Shanghai, China.
| |
Collapse
|
9
|
Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches. Front Med 2017; 11:509-521. [DOI: 10.1007/s11684-017-0546-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022]
|
10
|
Zhang QF, Yin WW, Xia Y, Yi YY, He QF, Wang X, Ren H, Zhang DZ. Liver-infiltrating CD11b -CD27 - NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol 2016; 14:819-829. [PMID: 27321064 PMCID: PMC5649104 DOI: 10.1038/cmi.2016.28] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells have a vital role in killing hepatocellular carcinoma (HCC) cells; however, the mechanism underlying tumor-infiltrating NK (TINK)-cell dysfunction remains poorly understood. Using flow cytometry staining, we precisely characterized the frequency, phenotype and function of NK subsets distinguished by CD27 and CD11b in 30 patients with HCC in comparison to 30 healthy controls. Interestingly, we found a substantial proportion of liver-infiltrating CD11b−CD27− (DN) NK subsets in tumor tissue from HCC patients. Remarkably, these relatively expanded DN NK subsets exhibited an inactive and immature phenotype. By detecting the expression of CD107a and interferon-gamma (IFN-γ) on NK subsets and NK cells, we demonstrated that DN NK subsets exhibited a poor cytotoxic capacity and deficient potential to produce IFN-γ in comparison to the other three subsets, which contributed to the dysfunction of TINK cells in HCC patients. In addition, we found that the presence of DN NK cells was closely associated with the clinical outcomes of HCC patients, as the frequency of DN NK cells among TINK cells was positively correlated with tumor stage and size. A large percentage of DN NK cells among TINK cells was an independent prognostic factor for lower survival in the 60-month follow-up period. In conclusion, a substantial proportion of CD11b−CD27−NK subsets among TINK cells accounts for NK-cell dysfunction in patients with HCC and is associated with tumor progression. Our study may provide a novel therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Qiong-Fang Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Wen-Wei Yin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Yang Xia
- Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ya-Yang Yi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qiu-Feng He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Xing Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Da-Zhi Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
11
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
12
|
Wang ZY, Geng L, Zheng SS. Current strategies for preventing the recurrence of hepatocellular carcinoma after liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:145-9. [PMID: 25865686 DOI: 10.1016/s1499-3872(15)60345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver transplantation is the optimal treatment for a selected group of patients with moderate to severe cirrhosis and hepatocellular carcinoma (HCC). Despite the strict selection of candidates, post-transplant recurrence often occurs and markedly reduces the long-term survival of patients with HCC. The present review focuses on the current strategies on preventing the recurrence of HCC after liver transplantation. DATA SOURCES Relevant articles were identified by extensive searching of PubMed using the keywords "hepatocellular carcinoma", "recurrence" and "liver transplantation" between January 1996 and January 2014. Additional papers were searched manually from the references in key articles. RESULTS The current theories of HCC recurrence after liver transplantation are: (i) the growth of pre-transplant occult metastases; (ii) the engraftment of circulating tumor cells released at the time of transplantation. Pre-transplant treatment aims to control local tumor by radiofrequency ablation, transarterial embolization and transarterial chemoembolization. The main objective during the operation is to prevent tumor cell dissemination. Post-transplant treatment includes systemic anticancer therapy, antiviral therapy, and most recently, immunotherapy. These strategies concentrate on the control of the tumor when the patients are waiting for transplant, to reduce the release of HCC cells during surgical procedures and to clear the occult HCC cells after transplantation. CONCLUSIONS Much can be done to prevent HCC recurrence after liver transplantation. In future, effort is likely to be directed towards combining multidisciplinary approaches and various treatment modalities.
Collapse
Affiliation(s)
- Zhuo-Yi Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | |
Collapse
|