1
|
Heydari Z, Gramignoli R, Piryaei A, Zahmatkesh E, Pooyan P, Seydi H, Nussler A, Szkolnicka D, Rashidi H, Najimi M, Hay DC, Vosough M. Standard Protocols for Characterising Primary and In Vitro-Generated Human Hepatocytes. J Cell Mol Med 2025; 29:e70390. [PMID: 39910642 PMCID: PMC11798750 DOI: 10.1111/jcmm.70390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocyte-like cells (HLCs) derived from pluripotent stem cells (PSCs) or direct reprogramming are an unlimited source of human hepatocytes for biomedical applications. HLCs are used to model human diseases, develop precise drugs and establish groundbreaking regenerative cell-based therapies. Primary human hepatocytes are the gold standard for studying human liver biology and pathology. However, their widespread use is limited by their rapid dedifferentiation in vitro, reliance on transplant-rejected donor organs, poor scalability and significant batch-to-batch variations. Therefore, high-quality 'off-the-shelf' HLCs are needed to overcome those limitations. Basic stepwise differentiation protocols have been developed to generate HLCs from PSCs. To evaluate the quality of the in vitro generated products, HLCs have been phenotyped using various methods. This review discusses various biological assays and methods available for the robust evaluation of HLC quality, emphasising the importance of using 24-h cultured primary human hepatocytes (PHHs) as a reference standard for comparison.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Paria Pooyan
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Andreas Nussler
- Siegfried Weller Institute for Trauma ResearchUniversity of TübingenTübingenGermany
| | - Dagmara Szkolnicka
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Hassan Rashidi
- Department of Developmental Biology and CancerUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research, UCLouvainBrusselsBelgium
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Repair and RegenerationUniversity of EdinburghEdinburghUK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer MedicineInstitution for Laboratory Medicine, Karolinska Institute HuddingeHuddingeSweden
| |
Collapse
|
2
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
3
|
Zhang L, Chen X, Shi X, Zhang M, Li N, Rui G, Chen Y, Xu R. Establishment and evaluation of a modified mouse model of renal subcapsular transplantation of microvolume cells. Biochem Biophys Res Commun 2023; 681:165-172. [PMID: 37776748 DOI: 10.1016/j.bbrc.2023.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
The renal subcapsular space provides an easily accessible, nutrition-rich pocket that supports engraftment, and as such, is often used as a site for stem and cancer cell transplantation. Renal capsule transplantation requires high technical requirements, the recipient mice have greater surgical damage, the mouse kidney is small and the kidney capsule is fragile, and the operation is easy to fail. The conventional method is not suitable for microvolume cell transplantation to this site in animals with a small kidney, such as mice, due to high risks of cell loss or dislocation or injury to the capsule. In this study, we developed and validated a modified approach for the mouse model of renal subcapsular transplantation of microvolume mouse skeletal stem cells (SSCs). We used a pipette with a refined tip to separate the capsule from the parenchyma. Moreover, we used cells suspended in Matrigel rather than a liquid carrier for transplantation. Using the modified method, we were able to transplant microvolume mouse SSCs as low as 0.2 μL beneath the mouse renal capsule with excellent reproducibility. After 4 weeks of in vivo culture, the implanted mouse SSCs formed grafts on the surface of the parenchyma at the target site of transplantation. Histological staining of the grafts indicated osteogenic, fibrogenic, and lipogenic differentiation. Micro-CT imaging of the grafts revealed bone formation. This modified model could be used to effectively transplant different types of microvolume cells to the renal subcapsular space when the donor cells are difficult to acquire or the recipient mice have a very small size kidney.
Collapse
Affiliation(s)
- Long Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xueqing Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingxia Zhang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Na Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ren Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
4
|
Payushina OV, Tsomartova DA, Chereshneva YV, Ivanova MY, Lomanovskaya TA, Pavlova MS, Kuznetsov SL. Experimental Transplantation of Mesenchymal Stromal Cells as an Approach to Studying Their Differentiation In Vivo (Review). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res 2022; 390:317-333. [PMID: 36178558 PMCID: PMC9522545 DOI: 10.1007/s00441-022-03686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of cellular and biotechnologies offers a new solution-the use of lung organoids for transplantation in such patients. Here, we review types of lung organoids, methods of their production and characterization, and experimental works on transplantation in vivo. These results show the promise of work in this direction. Despite the current problems associated with a low degree of cell engraftment, immune response, and insufficient differentiation, we are confident that organoid transplantation will find it is clinical application.
Collapse
Affiliation(s)
- Anna Demchenko
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Alexander Lavrov
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Svetlana Smirnikhina
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| |
Collapse
|
6
|
Li X, Wang Y, Yang H, Dai Y. Liver and Hepatocyte Transplantation: What Can Pigs Contribute? Front Immunol 2022; 12:802692. [PMID: 35095885 PMCID: PMC8795512 DOI: 10.3389/fimmu.2021.802692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
About one-fifth of the population suffers from liver diseases in China, meaning that liver disorders are prominent causative factors relating to the Chinese mortality rate. For patients with end-stage liver diseases such as hepatocellular carcinoma or acute liver diseases with life-threatening liver dysfunction, allogeneic liver transplantation is the only life-saving treatment. Hepatocyte transplantation is a promising alternative for patients with acute liver failure or those considered high risk for major surgery, particularly for the bridge-to-transplant period. However, the lack of donors has become a serious global problem. The clinical application of porcine xenogeneic livers and hepatocytes remains a potential solution to alleviate the donor shortage. Pig grafts of xenotransplantation play roles in providing liver support in recipients, together with the occurrence of rejection, thrombocytopenia, and blood coagulation dysfunction. In this review, we present an overview of the development, potential therapeutic impact, and remaining barriers in the clinical application of pig liver and hepatocyte xenotransplantation to humans and non-human primates. Donor pigs with optimized genetic modification combinations and highly effective immunosuppressive regimens should be further explored to improve the outcomes of xenogeneic liver and hepatocyte transplantation.
Collapse
Affiliation(s)
- Xiaoxue Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Hermsen J, Brown ME. Humanized Mouse Models for Evaluation of PSC Immunogenicity. ACTA ACUST UNITED AC 2021; 54:e113. [PMID: 32588980 DOI: 10.1002/cpsc.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New human pluripotent stem cell (hPSC)-derived therapies are advancing to clinical trials at an increasingly rapid pace. In addition to ensuring that the therapies function properly, there is a critical need to investigate the human immune response to these cell products. A robust allogeneic (or autologous) immune response could swiftly eliminate an otherwise promising cell therapy, even in immunosuppressed patients. In coming years, researchers in the regenerative medicine field will need to utilize a number of in vitro and in vivo assays and models to evaluate and better understand hPSC immunogenicity. Humanized mouse models-mice engrafted with functional human immune cell types-are an important research tool for investigating the mechanisms of the adaptive immune response to hPSC therapies. This article provides an overview of humanized mouse models relevant to the study of hPSC immunogenicity and explores central considerations for investigators seeking to utilize these powerful models in their research. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jack Hermsen
- University of Wisconsin School of Medicine and Public Health Western Clinical Campus, Madison, Wisconsin
| | - Matthew E Brown
- University of Wisconsin School of Medicine and Public Health Western Clinical Campus, Madison, Wisconsin
| |
Collapse
|
8
|
Bram Y, Nguyen DHT, Gupta V, Park J, Richardson C, Chandar V, Schwartz RE. Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annu Rev Biomed Eng 2021; 23:517-546. [PMID: 33974812 PMCID: PMC8864721 DOI: 10.1146/annurev-bioeng-112619-044026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Duc-Huy T Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vikas Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chanel Richardson
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; .,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Nicolas CT, Kaiser RA, Hickey RD, Allen KL, Du Z, VanLith CJ, Guthman RM, Amiot B, Suksanpaisan L, Han B, Francipane MG, Cheikhi A, Jiang H, Bansal A, Pandey MK, Garg I, Lowe V, Bhagwate A, O’Brien D, Kocher JPA, DeGrado TR, Nyberg SL, Lagasse E, Lillegard JB. Ex Vivo Cell Therapy by Ectopic Hepatocyte Transplantation Treats the Porcine Tyrosinemia Model of Acute Liver Failure. Mol Ther Methods Clin Dev 2020; 18:738-750. [PMID: 32913881 PMCID: PMC7452193 DOI: 10.1016/j.omtm.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.
Collapse
Affiliation(s)
- Clara T. Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | - Robert A. Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Children’s Hospitals and Clinics of Minnesota, Midwest Fetal Care Center, Minneapolis, MN, USA
| | | | - Kari L. Allen
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rebekah M. Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Medical College of Wisconsin, Wausau, WI, USA
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Han
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Ri.MED Foundation, Palermo, Italy
| | - Amin Cheikhi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Ishan Garg
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O’Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre A. Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph B. Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Children’s Hospitals and Clinics of Minnesota, Midwest Fetal Care Center, Minneapolis, MN, USA
- Pediatric Surgical Associates, Minneapolis, MN, USA
| |
Collapse
|
10
|
Yovchev MI, Lee EJ, Rodriguez‐Silva W, Locker J, Oertel M. Biliary Obstruction Promotes Multilineage Differentiation of Hepatic Stem Cells. Hepatol Commun 2019; 3:1137-1150. [PMID: 31388633 PMCID: PMC6672331 DOI: 10.1002/hep4.1367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Because of their high regenerative potential, stem cells are an ideal resource for development of therapies that replace injured tissue mass and restore function in patients with end-stage liver diseases. Using a rat model of bile duct ligation (BDL) and biliary fibrosis, we investigated cell engraftment, liver repopulation, and ectopic tissue formation after intrasplenic transplantation of epithelial stem/progenitor cells. Fetal liver cells were infused into the spleens of Fisher 344 rats with progressing biliary fibrosis induced by common BDL or rats without BDL. Cell delivery was well tolerated. After migration to the liver, donor-derived stem/progenitor cells engrafted, differentiated into hepatocytes and cholangiocytes, and formed large cell clusters at 2 months in BDL rats but not controls. Substantial numbers of donor cells were also detected at the splenic injection site where they generated hepatic and nonhepatic tissue. Transplanted cells differentiated into phenotypes other than hepato/cholangiocytic cells only in rats that underwent BDL. Quantitative reverse-transcription polymerase chain reaction analyses demonstrated marked up-regulation of tissue-specific genes of nonhepatic endodermal lineages (e.g., caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1 [Pdx1], keratin 13 [CK-13]), confirmed by immunohistochemistry. Conclusion: BDL and its induced fibrosis promote liver repopulation by ectopically transplanted fetal liver-derived cells. These cell fractions contain multipotent stem cells that colonize the spleen of BDL rats and differentiate into multiple gastrointestinal tissues, including liver, pancreas, intestine, and esophagus. The splenic microenvironment, therefore, represents an ideal niche to assess the differentiation of these stem cells, while BDL provides a stimulus that induces their differentiation.
Collapse
Affiliation(s)
- Mladen I. Yovchev
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | - Edward J. Lee
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
| | | | - Joseph Locker
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Michael Oertel
- Department of Pathology, Division of Experimental PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA
| |
Collapse
|
11
|
Kargar-Abarghouei E, Vojdani Z, Hassanpour A, Alaee S, Talaei-Khozani T. Characterization, recellularization, and transplantation of rat decellularized testis scaffold with bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:324. [PMID: 30463594 PMCID: PMC6249892 DOI: 10.1186/s13287-018-1062-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regenerative medicine potentially offers the opportunity for curing male infertility. Native extracellular matrix (ECM) creates a reconstruction platform to replace the organs. In this study, we aimed to evaluate the efficiency of the testis decellularized scaffold as a proper niche for stem cell differentiation toward testis-specific cell lineages. METHODS Rats' testes were decellularized by freeze-thaw cycle followed by immersion in deionized distilled water for 2 h, perfused with 1% Triton X-100 through ductus deferens for 4 h, 1% SDS for 48 h and 1% DNase for 2 h. The decellularized samples were prepared for further in vitro and in vivo analyses. RESULT Histochemical and immunohistochemistry studies revealed that ECM components such as Glycosaminoglycans (GAGs), neutral carbohydrate, elastic fibers, collagen I & IV, laminin, and fibronectin were well preserved, and the cells were completely removed after decellularization. Scanning electron microscopy (SEM) showed that 3D ultrastructure of the testis remained intact. In vivo and in vitro studies point out that decellularized scaffold was non-toxic and performed a good platform for cell division. In vivo implant of the scaffolds with or without mesenchymal stem cells (MSCs) showed that appropriate positions for transplantation were the mesentery and liver and the scaffolds could induce donor-loaded MSCs or host migrating cells to differentiate to the cells with phenotype of the sertoli- and leydig-like cells. The scaffolds also provide a good niche for migrating DAZL-positive cells; however, they could not differentiate into post meiotic-cell lineages. CONCLUSION The decellularized testis can be considered as a promising vehicle to support cell transplantation and may provide an appropriate niche for testicular cell differentiation.
Collapse
Affiliation(s)
- Elias Kargar-Abarghouei
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashraf Hassanpour
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advance Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Zand St., Shiraz, Fars, 7134845794, Iran. .,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Iwase H, Liu H, Schmelzer E, Ezzelarab M, Wijkstrom M, Hara H, Lee W, Singh J, Long C, Lagasse E, Gerlach JC, Cooper DKC, Gridelli B. Transplantation of hepatocytes from genetically engineered pigs into baboons. Xenotransplantation 2017; 24. [PMID: 28130881 DOI: 10.1111/xen.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. METHODS Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. RESULTS Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. DISCUSSION AND CONCLUSIONS As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Eva Schmelzer
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagjit Singh
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Lagasse
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jörg C Gerlach
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| |
Collapse
|
13
|
Abstract
The ultimate treatment for end-stage renal disease (ESRD) is orthotopic transplantation. However, the demand for kidney transplantation far exceeds the number of available donor organs. While more than 100,000 Americans need a kidney, only 17,000 people receive a kidney transplant each year (National Kidney Foundation's estimations). In recent years, several regenerative medicine/tissue engineering approaches have been exploited to alleviate the kidney shortage crisis. Although these approaches have yielded promising results in experimental animal models, the kidney is a complex organ and translation into the clinical realm has been challenging to date. In this review, we will discuss cell therapy-based approaches for kidney regeneration and whole-kidney tissue engineering strategies, including our innovative approach to regenerate a functional kidney using the lymph node as an in vivo bioreactor.
Collapse
|
14
|
Connecting the Dots: Will a Better Understanding of Liver Cell Homeostasis Lead to Improved Therapies for Recovery After Transplantation? Transplantation 2016; 100:962-3. [PMID: 27116575 DOI: 10.1097/tp.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TWH, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DKC, Park CG, O'Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T. Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation 2016; 100 Suppl 2:S1-44. [PMID: 26840096 PMCID: PMC4741413 DOI: 10.1097/tp.0000000000001055] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Bartlett
- Department of Surgery, University of Maryland School of Medicine, Baltimore MD
| | - James F. Markmann
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - David Scharp
- Prodo Laboratories, LLC, Irvine, CA
- The Scharp-Lacy Research Institute, Irvine, CA
| | - Thomas W. H. Kay
- Department of Medicine, St. Vincent’s Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne Victoria, Australia
| | - Jonathan Bromberg
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Gordon C. Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Nancy Bridges
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raja Kandaswamy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Peter Stock
- Division of Transplantation, University of San Francisco Medical Center, San Francisco, CA
| | - Peter Friend
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Phillip O'Connell
- The Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Cherie Stabler
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Shinichi Matsumoto
- National Center for Global Health and Medicine, Tokyo, Japan
- Otsuka Pharmaceutical Factory inc, Naruto Japan
| | - Barbara Ludwig
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden and DZD-German Centre for Diabetes Research, Dresden, Germany
| | - Pratik Choudhary
- Diabetes Research Group, King's College London, Weston Education Centre, London, United Kingdom
| | - Boris Kovatchev
- University of Virginia, Center for Diabetes Technology, Charlottesville, VA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Coulmbia University Medical Center, New York, NY
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Kristy Kraemer
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Hwa
- Juvenile Diabetes Research Foundation, New York, NY
| | - Edward Stanley
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Camillo Ricordi
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Mark Zimmerman
- BetaLogics, a business unit in Janssen Research and Development LLC, Raritan, NJ
| | - Julia Greenstein
- Discovery Research, Juvenile Diabetes Research Foundation New York, NY
| | - Eduard Montanya
- Bellvitge Biomedical Research Institute (IDIBELL), Hospital Universitari Bellvitge, CIBER of Diabetes and Metabolic Diseases (CIBERDEM), University of Barcelona, Barcelona, Spain
| | - Timo Otonkoski
- Children's Hospital and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Abstract
The mammalian liver is one of the most regenerative tissues in the body, capable of fully recovering mass and function after a variety of injuries. This factor alone makes the liver unusual among mammalian tissues, but even more atypical is the widely held notion that the method of repair depends on the manner of injury. Specifically, the liver is believed to regenerate via replication of existing cells under certain conditions and via differentiation from specialized cells--so-called facultative stem cells--under others. Nevertheless, despite the liver's dramatic and unique regenerative response, the cellular and molecular features of liver homeostasis and regeneration are only now starting to come into relief. This review provides an overview of normal liver function and development and focuses on the evidence for and against various models of liver homeostasis and regeneration.
Collapse
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Abramson Family Cancer Research Institute, and Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
17
|
Francipane MG, Lagasse E. Pluripotent Stem Cells to Rebuild a Kidney: The Lymph Node as a Possible Developmental Niche. Cell Transplant 2015; 25:1007-23. [PMID: 26160801 DOI: 10.3727/096368915x688632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Kidney disease poses a global challenge. Stem cell therapy may offer an alternative therapeutic approach to kidney transplantation, which is often hampered by the limited supply of donor organs. While specific surface antigen markers have yet to be identified for the analysis and purification of kidney stem/progenitor cells for research or clinical use, the reprogramming of somatic cells to pluripotent cells and their differentiation into the various kidney lineages might represent a valuable strategy to create a renewable cell source for regenerative purposes. In this review, we first provide an overview of kidney development and explore current knowledge about the role of extra- and intrarenal cells in kidney repair and organogenesis. We then discuss recent advances in the 1) differentiation of rodent and human embryonic stem cells (ESCs) into renal lineages; 2) generation of induced pluripotent stem cells (iPSCs) from renal or nonrenal (kidney patient-derived) adult cells; 3) differentiation of iPSCs into renal lineages; and 4) direct transcriptional reprogramming of adult renal cells into kidney progenitor cells. Finally, we describe the lymph node as a potential three-dimensional (3D) in vivo environment for kidney organogenesis from pluripotent stem cells.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
18
|
Francipane MG, Lagasse E. The lymph node as a new site for kidney organogenesis. Stem Cells Transl Med 2015; 4:295-307. [PMID: 25646529 PMCID: PMC4339853 DOI: 10.5966/sctm.2014-0208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
The shortage of organs for kidney transplantation has created the need to develop new strategies to restore renal structure and function. Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate or sustain complex structures like liver, pancreas, and thymus, we investigated whether it could also support kidney organogenesis from mouse renal embryonic tissue (metanephroi). Here we provide the first evidence that metanephroi acquired a mature phenotype upon injection into LN, and host cells likely contributed to this process. Urine-like fluid-containing cysts were observed in several grafts 12 weeks post-transplantation, indicating metanephroi transplants' ability to excrete products filtered from the blood. Importantly, the kidney graft adapted to a loss of host renal mass, speeding its development. Thus, the LN might provide a unique tool for studying the mechanisms of renal maturation, cell proliferation, and fluid secretion during cyst development. Moreover, we provide evidence that inside the LN, short-term cultured embryonic kidney cells stimulated with the Wnt agonist R-Spondin 2 gave rise to a monomorphic neuron-like cell population expressing the neuronal 200-kDa neurofilament heavy marker. This finding indicates that the LN might be used to validate the differentiation potential of candidate stem cells in regenerative nephrology.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Ri.MED Foundation, Palermo, Italy
| | - Eric Lagasse
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
19
|
Thomas SN, Schudel A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr Opin Chem Eng 2015; 7:65-74. [PMID: 25745594 DOI: 10.1016/j.coche.2014.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite drug formulation improving circulation times and targeting, efficacy is stymied by inadequate penetration into and retention within target tissues. This review highlights the barriers restricting delivery to the connective tissue interstitium, lymphatics, and lymph nodes as well as advances in engineering drug carriers to overcome these delivery challenges. Three-dimensional tissue physiology is discussed in the context of providing material design principles for delivery to these tissues; in particular the influence of interstitial and lymphatic flows as well as differential permeabilities of the blood and lymphatic capillaries. Key examples of materials with different characteristics developed to overcome these transport barriers are discussed as well as potential areas for further development.
Collapse
Affiliation(s)
- Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA ; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Alex Schudel
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA ; School of Materials Science and Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Francipane MG, Lagasse E. Maturation of embryonic tissues in a lymph node: a new approach for bioengineering complex organs. Organogenesis 2015; 10:323-31. [PMID: 25531035 PMCID: PMC4750546 DOI: 10.1080/15476278.2014.995509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate complex structures like liver, pancreas, and thymus, we investigated whether LN could also support early development and maturation from several mid-embryonic (E14.5/15.5) mouse tissues including brain, thymus, lung, stomach, and intestine. Here we observed brain maturation in LN by showing the emergence of astrocytes with well-developed branching processes. Thymus maturation in LN was monitored by changes in host immune cells. Finally, newly terminally differentiated mucus-producing cells were identified in ectopic tissues generated by transplantation of lung, stomach and intestine in LN. Thus, we speculate the LN offers a unique approach to study the intrinsic and extrinsic differentiation potential of cells and tissues during early development, and provides a new site for bioengineering complex body parts.
Collapse
Key Words
- 21wEcT, 21-week ectopic thymus
- 2D, 2-dimensional
- 3D, 3-dimensional
- 3wEcI, 3-week ectopic intestine
- 3wEcL, 3-week ectopic lung
- 3wEcS, 3-week ectopic stomach
- 6wEcT, 6-week ectopic thymus
- AdT, adult thymus
- Aire, autoimmune regulator
- CgA, chromogranin A
- E14.5/15.5, embryonic day 14.5 to 15.5
- ECM, extracellular matrix
- ER-TR7, reticular fibroblasts and reticular fibers
- EmI, embryonic intestine
- EmL, embryonic lung
- EmS, embryonic stomach
- EmT, embryonic thymus
- EpCAM1, epithelial cell adhesion molecule 1
- FACS, fluorescence-activated cell sorting
- FAH, fumarylacetoacetate hydrolase
- GFAPδ, glial fibrillary acid protein delta
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- K5, keratin 5
- K8, keratin 8
- LN, lymph node
- MAP-2, Microtubule-associated protein 2
- bioreactor
- cTEC, cortical thymic epithelial cell
- chimerism
- development
- lymph node
- mTEC, medullary thymic epithelial cell
- mTOR, mammalian target of rapamycin
- terminal differentiation
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- a McGowan Institute for Regenerative Medicine; Department of Pathology ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | |
Collapse
|
21
|
|