1
|
Yu Y, Bi Z, Jiang Q, Huang S, He Y, Gai J, Huang H, Liu L, Gao Y, Li X, Wang C, Wu C. Oxidized ATP Suppresses B Lymphocyte Activity to Attenuate Antibody-mediated Rejection of Kidney Allografts in Mice. Transplantation 2025; 109:e11-e21. [PMID: 38946027 PMCID: PMC11627330 DOI: 10.1097/tp.0000000000005118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) is a major cause of renal allograft dysfunction and loss. Targeting B cells and/or donor-specific antibody removal using plasma exchange and anti-CD20 antibodies are increasingly used in clinical practice, but the efficacy remains limited. Recent studies suggest that targeting purinergic P2X7 receptor/ATP axis can have profound immune regulatory effects in transplant models, but the mechanisms involved remain incompletely defined. METHODS Purified B cells were isolated from the spleen of Balb/C mice and cultured with oxidized ATP at different concentrations. Proliferation and differentiation of B cells were examined. Effects of oxidized ATP were examined in a presensitized animal model where kidney allograft rejection mimics aspects of clinical AMR. Histopathology was assessed at the time of rejection or on day 5 after kidney transplantation. Infiltrating immune cells in renal allografts were detected by flow cytometry. RESULTS Oxidized ATP inhibited B-cell activation and proliferation in vitro, significantly attenuated histological signs of graft injury and prolonged kidney allograft survival. Mechanistically, oxidized ATP inhibited antibody secretion by activated B cells in response to lipopolysaccharide stimulation and markedly suppressed the production of donor-specific antibody in kidney allograft recipients. Oxidized ATP also reduced graft infiltration by other inflammatory cells. CONCLUSIONS These findings provide evidence for the involvement of the purinergic P2X7 receptor pathway in AMR and suggest that targeting this pathways may have important clinical implications.
Collapse
Affiliation(s)
- Yi Yu
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Organ Transplant Center, Zhongshan People’s Hospital, Zhongshan, China
| | - Zirong Bi
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qifeng Jiang
- Department of Pathology, Guangzhou Huayin Medical Laboratory Center, Guangzhou, China
| | - Shangjin Huang
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingzhen He
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingci Gai
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiting Huang
- Guangdong Provincial Key Laboratory on Organ Medicine, Guangzhou, China
| | - Longshan Liu
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xirui Li
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chenglin Wu
- Department of Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
2
|
Durgam SS, Rosado-Sánchez I, Yin D, Speck M, Mojibian M, Sayin I, Hynes GE, Alegre ML, Levings MK, Chong AS. CAR Treg synergy with anti-CD154 mediates infectious tolerance to dictate heart transplant outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614149. [PMID: 39386649 PMCID: PMC11463638 DOI: 10.1101/2024.09.20.614149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Successful allograft specific tolerance induction would eliminate the need for daily immunosuppression and improve post-transplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific Chimeric Antigen Receptors (CAR-Tregs) is a promising strategy, but as monotherapy, cannot prolong the survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57Bl/6 recipients, we show that HLA-A2-specific (A2) CAR Tregs was able to synergize with low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited endogenous non-A2 donor- specific T cell, B cell and antibody responses, and promoted a significant increase in endogenous FoxP3 + Tregs with indirect donor-specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FoxP3 neg A2.CAR T cells preferentially accumulated in rejecting allografts and endogenous donor-specific responses were not controlled. This study therefore provides the first evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity towards allograft tolerance.
Collapse
|
3
|
Li X, Zhao Y, Sun W, Zhang C, Yu Y, Du B, Jin A, Liu Y. Neutrophil depletion attenuates antibody-mediated rejection in a renal transplantation mouse model. Clin Exp Immunol 2024; 216:211-219. [PMID: 38150328 PMCID: PMC11036104 DOI: 10.1093/cei/uxad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/05/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023] Open
Abstract
Antibody-mediated rejection (AMR) can cause graft failure following renal transplantation. Neutrophils play a key role in AMR progression, but the exact mechanism remains unclear. We investigated the effect of neutrophils on AMR in a mouse kidney transplantation model. The mice were divided into five groups: syngeneic transplantation (Syn), allograft transplantation (Allo), and three differently treated AMR groups. The AMR mouse model was established using skin grafts to pre-sensitize recipient mice. Based on the AMR model, Ly6G-specific monoclonal antibodies were administered to deplete neutrophils (NEUT-/- + AMR) and TACI-Fc was used to block B-cell-activating factor (BAFF)/a proliferation-inducing ligand (APRIL) signaling (TACI-Fc + AMR). Pathological changes were assessed using hematoxylin-eosin and immunohistochemical staining. Banff values were evaluated using the Banff 2015 criteria. Donor-specific antibody (DSA) levels were assessed using flow cytometry, and BAFF and APRIL concentrations were measured using ELISA. Compared to the Syn and Allo groups, a significantly increased number of neutrophils and increased C4d and IgG deposition were observed in AMR mice, accompanied by elevated DSA levels. Neutrophil depletion inhibited inflammatory cell infiltration and reduced C4d and IgG deposition. Neutrophil depletion significantly decreased DSA levels after transplantation and suppressed BAFF and APRIL concentrations, suggesting a mechanism for attenuating AMR-induced graft damage. Similar results were obtained after blockading BAFF/APRIL using a TACI-Fc fusion protein. In summary, neutrophil infiltration increased in the AMR mouse renal transplantation model. Neutrophil depletion or blockading the BAFF/APRIL signaling pathway significantly alleviated AMR and may provide better options for the clinical treatment of AMR.
Collapse
Affiliation(s)
- Xingku Li
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yakun Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wenying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Cong Zhang
- Department of Microbiology and Immunology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yadi Yu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| | - Bo Du
- Experimental Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - AiShun Jin
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ye Liu
- Department of Immunology, College of Basic Medicine, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Zhang H, Cavazzoni CB, Podestà MA, Bechu ED, Ralli G, Chandrakar P, Lee JM, Sayin I, Tullius SG, Abdi R, Chong AS, Blazar BR, Sage PT. IL-21-producing effector Tfh cells promote B cell alloimmunity in lymph nodes and kidney allografts. JCI Insight 2023; 8:e169793. [PMID: 37870962 PMCID: PMC10619486 DOI: 10.1172/jci.insight.169793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Follicular helper T (Tfh) cells have been implicated in controlling rejection after allogeneic kidney transplantation, but the precise subsets, origins, and functions of Tfh cells in this process have not been fully characterized. Here we show that a subset of effector Tfh cells marked by previous IL-21 production is potently induced during allogeneic kidney transplantation and is inhibited by immunosuppressive agents. Single-cell RNA-Seq revealed that these lymph node (LN) effector Tfh cells have transcriptional and clonal overlap with IL-21-producing kidney-infiltrating Tfh cells, implicating common origins and developmental trajectories. To investigate the precise functions of IL-21-producing effector Tfh cells in LNs and allografts, we used a mouse model to selectively eliminate these cells and assessed allogeneic B cell clonal dynamics using a single B cell culture system. We found that IL-21-producing effector Tfh cells were essential for transplant rejection by regulating donor-specific germinal center B cell clonal dynamics both systemically in the draining LN and locally within kidney grafts. Thus, IL-21-producing effector Tfh cells have multifaceted roles in Ab-mediated rejection after kidney transplantation by promoting B cell alloimmunity.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel A. Podestà
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elsa D. Bechu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ismail Sayin
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anita S. Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapies, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Alfaro R, Llorente S, Gonzalez-Martínez G, Jimenez-Coll V, Martínez-Banaclocha H, Galián JA, Botella C, Moya-Quiles MR, de la Peña-Moral J, Minguela A, Legaz I, Muro M. Clinical Significance of the Pre-Transplant CXCR3 and CCR6 Expression on T Cells In Kidney Graft Recipients. Transplant Proc 2023; 55:66-71. [PMID: 36621349 DOI: 10.1016/j.transproceed.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND T cells play a fundamental role in the processes that mediate graft rejection, tolerance, and defense against infections. The CXCR3 and CCR6 receptors, highly expressed in Th1 (type 1 T helper cells)/Tc1 (T cytotoxic cells, type 1), Th1-Tc1, and Th17-Tc17 lymphocytes, respectively, participate in cell migration toward inflamed tissues. The altered expression level of CXCR3 and CCR6 has been associated with different clinical events after renal transplantation, such as acute rejection (AR) and chronic graft dysfunction, but data are still limited. In this study, we evaluated the expression of the receptor CXCR3 and CCR6 in peripheral blood T lymphocytes from kidney transplant recipients (KTR) and their association with viral infections, AR, and allograft function. METHODS Through flow cytometry, the peripheral blood expression of CXCR3 and CCR6 in T cells was evaluated in a pretransplant collection of KTR. The levels of these T subpopulations and their association with the incidence of AR, kidney graft function, viral infections, cytomegalovirus, and BK virus were studied. Adverse clinical events and graft function were monitored during the first year post transplant. RESULTS KTRs with low pretransplantation levels of Th17 (CD4+CXCR3-CCR6+) (tertile 1, Th17<16.4%) had a higher risk of suffering AR during the first year post transplantation (P = .033). KTRs with viral infections or reactivations during the first 3 months post transplantation had significantly lower levels of Tc17 (CD8+CXCR3-CCR6+) and higher levels of Th1 (CD4+CXCR3+CCR6-). In patients with cytomegalovirus reactivations, the viral peak correlates negatively with the pretransplant levels of Th1 (r = -0.606, P = .037). CONCLUSIONS Pretransplantation assessment of Th1-Th17 and Tc1-Tc17 levels may help predict post-transplant clinical events such as AR and reactivation of viral infections.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Nephrology Services; University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Gema Gonzalez-Martínez
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Víctor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jesús de la Peña-Moral
- Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia, Spain.
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| |
Collapse
|
6
|
Podestà MA, Cravedi P. Editorial: Mechanistic and therapeutic advances in antibody-mediated rejection: reasons to be optimistic. Curr Opin Organ Transplant 2022; 27:369-370. [PMID: 36102358 PMCID: PMC9484036 DOI: 10.1097/mot.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Paolo Cravedi
- Translational Transplant Research Center (TTRC), Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|