1
|
Zhang J, Xu Y, Zhang Y, Bossila EA, Shi M, Zhao Y. Bioinformatic analysis as a first step to predict the compatibility of hematopoiesis and immune system genes between humans and pigs. Xenotransplantation 2022; 29:e12764. [PMID: 35695327 DOI: 10.1111/xen.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The shortage of allogeneic donor organs leaves its supply far short of clinical need. There are great expectations on xenotransplantation, especially with pigs' organs. With the genetic modification of donor pigs, the rejection and cross-species transmission issues have now been widely addressed. However, research on the compatibility of genes between humans and pigs was limited. We performed a systematic screening analysis of predicted incompatible genes between humans and pigs, judged by low protein sequence similarities or different predicted protein domain compositions. By combining with gene set enrichment analysis, we screened out several key genes of hematopoiesis and the immune system with possible incompatibilities, which might be important for establishing chimera and xenotransplantation between humans and pigs. There were seven chemokine genes, including CCL1, CCL5, CCL24, CCL25, CCL28, CXCL12, and CXCL16, that exhibited limited similarity between humans and pigs (similarity < 0.8). Among hematopoiesis process-related genes, 15 genes of adhesion molecules, Notch ligands, and cytokine receptors exhibited differences between humans and pigs. In complement and coagulation cascades, 19 genes showed low similarity and 77 genes had different domain compositions between humans and pigs. Our study provides a good reference for further genetic modification of pigs, which might be beneficial for xenotransplantation.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingzi Zhang
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elhusseny A Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo, Egypt
| | - Mingpu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Shasha L, Zhongjie L, Lingling F, Ustichenko VD, Pakhomov OV, Deng B. Comparison between slow and rapid freezing for adrenal gland cryopreservation and xenotransplantation. Cryobiology 2021; 102:68-75. [PMID: 34324838 DOI: 10.1016/j.cryobiol.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
The aim of our study was to examine whether slow or rapid cryopreservation of adrenal xenografts affected xenotransplant outcome. Adrenal xenografts were got from newborn piglets (<24 h after birth). Receptor rats were randomly divided into four groups: a bilateral adrenalectomy group, fresh xenotransplantation group, rapid cryopreservation xenotransplantation group, and a slow cryopreservation xenotransplantation group. 30 days after xenotransplantation, the survival rates of rats in the fresh xenotransplantation group, rapid cryopreservation xenotransplantation group and slow cryopreservation xenotransplantation group were 80 %, 60 % and 60 %, respectively, which were significantly higher than 40 % of the bilateral adrenalectomy group. In addition, the survival rate of rats in the slow cryopreservation group was consistently significantly higher than that in the rapid cryopreservation group at 29 days after xenotransplantation. Morphological observation showed that there were a few medulla cells existed in the adrenal glands in the slow cryopreservation group after 30 days of xenotransplantation, but no medulla cells were found in the rapid cryopreservation group. The plasma cortisol level of rats in the fresh xenotransplantation group and the slow xenotransplantation group 30 days after xenotransplantation was significantly higher than that of the rapid cryopreservation group and bilateral adrenalectomy group (P < 0.05). The levels of liver glycogen and cholesterol in the xenotransplantation rats were increased relative to those of the bilateral adrenalectomy rats, and close to normal level. In conclusion, compared with rapidly frozen preserved grafts, slowly frozen preserved grafts not only ensure the structural integrity of adrenal tissues, but also have corresponding physiological functions, which provid a basic research opportunities for the preservation of xenografts and the treatment of adrenal corticosteroid deficiency. Moreover, these findings can provide evidence for xenotransplantation in the treatment of Addison's disease (adrenal cortex hormone deficiency).
Collapse
Affiliation(s)
- Li Shasha
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - Li Zhongjie
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - Fan Lingling
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China
| | - V D Ustichenko
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - O V Pakhomov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bo Deng
- Basic Medical College of Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| |
Collapse
|
3
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
4
|
Song M, Fitch ZW, Samy KP, Martin BM, Gao Q, Patrick Davis R, Leopardi FV, Huffman N, Schmitz R, Devi GR, Collins BH, Kirk AD. Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation 2021; 28:e12680. [PMID: 33619844 DOI: 10.1111/xen.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.
Collapse
Affiliation(s)
- Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin M Martin
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Francis V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Niki Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Yu XH, Deng WY, Jiang HT, Li T, Wang Y. Kidney xenotransplantation: Recent progress in preclinical research. Clin Chim Acta 2020; 514:15-23. [PMID: 33301767 DOI: 10.1016/j.cca.2020.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
Kidney transplantation is the most effective treatment for end-stage renal disease, but is limited by the increasing shortage of deceased and living human donor kidneys. Xenotransplantation using pig organs provides the possibility to resolve the issue of organ supply shortage and is regarded as the next great medical revolution. In the past five years, there have been sequential advances toward the prolongation of life-supporting pig kidney xenograft survival in non-human primates, with the longest survival being 499 days. This progress is due to the growing availability of pigs with multi-layered genetic modifications to overcome the pathobiological barriers and the application of a costimulation blockade-based immunosuppressive regimen. These encouraging results bring the hope to initiate the clinical trials of pig kidney transplantation in the near future. In this review, we summarized the latest advances regarding pig kidney xenotransplantation in preclinical models to provide a basis for future investigation and potential clinical translation.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Hong-Tao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China
| | - Yi Wang
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China; The Transplantation Institute of Hainan Medical University, Haikou, Hainan 460106, China.
| |
Collapse
|
6
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
7
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
8
|
Yoon I, Chung H, Kim H, Nam H, Shin J, Kim Y, Park C. Peri‐graft porcine‐specific CD4
+
FoxP3
+
regulatory T cells by CD40‐CD154 blockade prevented the rejection of porcine islet graft in diabetic mice. Xenotransplantation 2019; 26:e12533. [DOI: 10.1111/xen.12533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Il‐Hee Yoon
- VHS Veterans Medical Research Institute VHS Medical Center Seoul Korea
| | - Hyunwoo Chung
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Hyun‐Je Kim
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Hye‐Young Nam
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
| | - Jun‐Seop Shin
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Cancer Research Institute Seoul National University College of Medicine Seoul Korea
- Institute of Endemic Diseases Seoul National University College of Medicine Seoul Korea
- Biomedical Research Institute Seoul National University Hospital Seoul Korea
| | - Yong‐Hee Kim
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
| | - Chung‐Gyu Park
- Xenotransplantation Research Center Seoul National University College of Medicine Seoul Korea
- Department of Microbiology and Immunology Seoul National University College of Medicine Seoul Korea
- Department of Biomedical Sciences Seoul National University Graduate School Seoul Korea
- Cancer Research Institute Seoul National University College of Medicine Seoul Korea
- Institute of Endemic Diseases Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
9
|
Kim GA, Lee EM, Cho B, Alam Z, Kim SJ, Lee S, Oh HJ, Hwang JI, Ahn C, Lee BC. Generation by somatic cell nuclear transfer of GGTA1 knockout pigs expressing soluble human TNFRI-Fc and human HO-1. Transgenic Res 2018; 28:91-102. [DOI: 10.1007/s11248-018-0103-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/01/2018] [Indexed: 11/29/2022]
|
10
|
Abstract
PURPOSE OF REVIEW This review describes the most recent progress in xeno lung transplantation (XLTx) to date. It describes the potential mechanisms of early xeno lung graft loss, as well as the latest therapeutic strategies to overcome them. RECENT FINDINGS Using ex-vivo perfusion models of porcine lungs with human blood, the use of genetically modified pig lungs along with novel pharmaceutical approaches has recently been studied. Strategies that have demonstrated improved lung survival include the knockout of known xenoantigens (GalTKO and N-glycolylneuraminic acid-KO), genes that regulate complement activation (hCD46 and hCD55), as well as the inflammation/coagulation cascade (human leukocyte antigen-E, human thrombomodulin, human endothelial protein C receptor, hCD47, hCD39, hCD73 and heme oxygenase-1). Furthermore, pharmacologic interventions including the depletion of pulmonary intravascular macrophages or von Willebrand factor, inhibition of thromboxane synthase and blockade of histamine receptors have also demonstrated protective effects on xeno lung grafts. Using in-vivo pig to nonhuman primate lung transplant models, these approaches have been shown to extend pulmonary xenograft survival to 5 days. SUMMARY The development of new multitransgenic GalTKO pigs has demonstrated prolongation of porcine xenograft survival; however, advancement in XLTx has remained frustratingly limited. Further intensive and innovative strategies including genetic manipulation of donors, as well as inflammation/coagulation dysregulation, are required to make XLTx a clinical possibility.
Collapse
|
11
|
Soltys KA, Setoyama K, Tafaleng EN, Soto Gutiérrez A, Fong J, Fukumitsu K, Nishikawa T, Nagaya M, Sada R, Haberman K, Gramignoli R, Dorko K, Tahan V, Dreyzin A, Baskin K, Crowley JJ, Quader MA, Deutsch M, Ashokkumar C, Shneider BL, Squires RH, Ranganathan S, Reyes-Mugica M, Dobrowolski SF, Mazariegos G, Elango R, Stolz DB, Strom SC, Vockley G, Roy-Chowdhury J, Cascalho M, Guha C, Sindhi R, Platt JL, Fox IJ. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol 2017; 66:987-1000. [PMID: 28027971 PMCID: PMC5395353 DOI: 10.1016/j.jhep.2016.12.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatocyte transplantation partially corrects genetic disorders and has been associated anecdotally with reversal of acute liver failure. Monitoring for graft function and rejection has been difficult, and has contributed to limited graft survival. Here we aimed to use preparative liver-directed radiation therapy, and continuous monitoring for possible rejection in an attempt to overcome these limitations. METHODS Preparative hepatic irradiation was examined in non-human primates as a strategy to improve engraftment of donor hepatocytes, and was then applied in human subjects. T cell immune monitoring was also examined in human subjects to assess adequacy of immunosuppression. RESULTS Porcine hepatocyte transplants engrafted and expanded to comprise up to 15% of irradiated segments in immunosuppressed monkeys preconditioned with 10Gy liver-directed irradiation. Two patients with urea cycle deficiencies had early graft loss following hepatocyte transplantation; retrospective immune monitoring suggested the need for additional immunosuppression. Preparative radiation, anti-lymphocyte induction, and frequent immune monitoring were instituted for hepatocyte transplantation in a 27year old female with classical phenylketonuria. Post-transplant liver biopsies demonstrated multiple small clusters of transplanted cells, multiple mitoses, and Ki67+ hepatocytes. Mean peripheral blood phenylalanine (PHE) level fell from pre-transplant levels of 1343±48μM (normal 30-119μM) to 854±25μM (treatment goal ≤360μM) after transplant (36% decrease; p<0.0001), despite transplantation of only half the target number of donor hepatocytes. PHE levels remained below 900μM during supervised follow-up, but graft loss occurred after follow-up became inconsistent. CONCLUSIONS Radiation preconditioning and serial rejection risk assessment may produce better engraftment and long-term survival of transplanted hepatocytes. Hepatocyte xenografts engraft for a period of months in non-human primates and may provide effective therapy for patients with acute liver failure. LAY SUMMARY Hepatocyte transplantation can potentially be used to treat genetic liver disorders but its application in clinical practice has been impeded by inefficient hepatocyte engraftment and the inability to monitor rejection of transplanted liver cells. In this study, we first show in non-human primates that pretreatment of the host liver with radiation improves the engraftment of transplanted liver cells. We then used this knowledge in a series of clinical hepatocyte transplants in patients with genetic liver disorders to show that radiation pretreatment and rejection risk monitoring are safe and, if optimized, could improve engraftment and long-term survival of transplanted hepatocytes in patients.
Collapse
Affiliation(s)
- Kyle A Soltys
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kentaro Setoyama
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edgar N Tafaleng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alejandro Soto Gutiérrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jason Fong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ken Fukumitsu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Taichiro Nishikawa
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Masaki Nagaya
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rachel Sada
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kimberly Haberman
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Dorko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Veysel Tahan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexandra Dreyzin
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kevin Baskin
- Division of Vascular and Interventional Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - John J Crowley
- Division of Vascular and Interventional Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Mubina A Quader
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Melvin Deutsch
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chethan Ashokkumar
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Benjamin L Shneider
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Sarangarajan Ranganathan
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Miguel Reyes-Mugica
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Steven F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - George Mazariegos
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Rajavel Elango
- Department of Pediatrics, University of British Columbia and Child & Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Donna B Stolz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gerard Vockley
- Departments of Pediatrics and Human Genetics, University of Pittsburgh School of Medicine and Department of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Jayanta Roy-Chowdhury
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marilia Cascalho
- Departments of Surgery and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rakesh Sindhi
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Jeffrey L Platt
- Departments of Surgery and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Ira J Fox
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
12
|
Stevens S. Synthetic Biology in Cell and Organ Transplantation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029561. [PMID: 28003184 DOI: 10.1101/cshperspect.a029561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation.
Collapse
Affiliation(s)
- Sean Stevens
- Mammalian Synthetic Biology, Synthetic Genomics, Inc., La Jolla, California 92037
| |
Collapse
|
13
|
Ramackers W, Klose J, Tiede A, Werwitzke S, Rataj D, Friedrich L, Johanning K, Vondran FWR, Bergmann S, Schuettler W, Bockmeyer CL, Becker JU, Klempnauer J, Winkler M. Effect of TNF-alpha blockade on coagulopathy and endothelial cell activation in xenoperfused porcine kidneys. Xenotransplantation 2016. [PMID: 26216261 DOI: 10.1111/xen.12179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Following pig-to-primate kidney transplantation, endothelial cell activation and xenogenic activation of the recipient's coagulation eventually leading to organ dysfunction and microthrombosis can be observed. In this study, we examined the effect of a TNF-receptor fusion protein (TNF-RFP) on endothelial cell activation and coagulopathy utilizing an appropriate ex vivo perfusion system. METHODS Using an ex vivo perfusion circuit based on C1-Inhibitor (C1-Inh) and low-dose heparin administration, we have analyzed consumptive coagulopathy following contact of human blood with porcine endothelium. Porcine kidneys were recovered following in situ cold perfusion with Histidine-tryptophan-ketoglutarate (HTK) organ preservation solution and were immediately connected to a perfusion circuit utilizing freshly drawn pooled porcine or human AB blood. The experiments were performed in three individual groups: autologous perfusion (n = 5), xenogenic perfusion without any further pharmacological intervention (n = 10), or with addition of TNF-RFP (n = 5). After perfusion, tissue samples were obtained for real-time PCR and immunohistological analyses. Endothelial cell activation was assessed by measuring the expression levels of E-selectin, ICAM-1, and VCAM-1. RESULTS Kidney survival during organ perfusion with human blood, C1-Inh, and heparin, but without any further pharmacological intervention was 126 ± 78 min. Coagulopathy was observed with significantly elevated concentrations of D-dimer and thrombin-antithrombin complex (TAT), resulting in the formation of multiple microthrombi. Endothelial cell activation was pronounced, as shown by increased expression of E-selectin and VCAM-1. In contrast, pharmacological intervention with TNF-RFP prolonged organ survival to 240 ± 0 min (max. perfusion time; no difference to autologous control). Formation of microthrombi was slightly reduced, although not significantly, if compared to the xenogenic control. D-dimer and TAT were elevated at similar levels to the xenogenic control experiments. In contrast, endothelial cell activation, as shown by real-time PCR, was significantly reduced in the TNF-RFP group. CONCLUSION We conclude that although coagulopathy was not affected, TNF-RFP is able to suppress inflammation occurring after xenoperfusion in this ex vivo perfusion model.
Collapse
Affiliation(s)
- Wolf Ramackers
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johannes Klose
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Tiede
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sonja Werwitzke
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dennis Rataj
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars Friedrich
- Klinik für Anaesthesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kai Johanning
- Klinik für Anaesthesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian W R Vondran
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sabine Bergmann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfgang Schuettler
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Jan Ulrich Becker
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jürgen Klempnauer
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Winkler
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
14
|
|
15
|
Butler JR, Martens GR, Li P, Wang ZY, Estrada JL, Ladowski JM, Tector M, Tector AJ. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. J Surg Res 2015; 200:698-706. [PMID: 26375504 DOI: 10.1016/j.jss.2015.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered. METHODS Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy. RESULTS Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls. CONCLUSIONS Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.
Collapse
Affiliation(s)
- James R Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gregory R Martens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng-Yu Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose L Estrada
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph M Ladowski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matt Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
16
|
Harris DG, Benipal PK, Cheng X, Burdorf L, Azimzadeh AM, Pierson RN. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: development and application to xenotransplantation. PLoS One 2015; 10:e0123015. [PMID: 25830912 PMCID: PMC4382176 DOI: 10.1371/journal.pone.0123015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/26/2015] [Indexed: 02/01/2023] Open
Abstract
Background Porcine xenografts are a promising source of scarce transplantable organs, but stimulate intense thrombosis of human blood despite targeted genetic and pharmacologic interventions. Current experimental models do not enable study of the blood/endothelial interface to investigate adhesive interactions and thrombosis at the cellular level under physiologic conditions. The purpose of this study was to develop and validate a live-cell, shear-flow based thrombosis assay relevant to general thrombosis research, and demonstrate its potential in xenotransplantation applications. Methodology/Principal Findings Confluent wild-type (WT, n = 48) and Gal transferase knock-out (GalTKO, which resist hyperacute rejection; n = 11) porcine endothelia were cultured in microfluidic channels. To mimic microcirculatory flow, channels were perfused at 5 dynes/cm2 and 37°C with human blood stained to fluorescently label platelets. Serial fluorescent imaging visualized percent surface area coverage (SA, for adhesion of labeled cells) and total fluorescence (a metric of clot volume). Aggregation was calculated by the fluorescence/SA ratio (FR). WT endothelia stimulated diffuse platelet adhesion (SA 65 ± 2%) and aggregation (FR 120 ± 1 a.u.), indicating high-grade thrombosis consistent with the rapid platelet activation and consumption seen in whole-organ lung xenotransplantation models. Experiments with antibody blockade of platelet aggregation, and perfusion of syngeneic and allo-incompatible endothelium was used to verify the biologic specificity and validity of the assay. Finally, with GalTKO endothelia thrombus volume decreased by 60%, due primarily to a 58% reduction in adhesion (P < 0.0001 each); importantly, aggregation was only marginally affected (11% reduction, P < 0.0001). Conclusions/Significance This novel, high-throughput assay enabled dynamic modeling of whole-blood thrombosis on intact endothelium under physiologic conditions, and allowed mechanistic characterization of endothelial and platelet interactions. Applied to xenogeneic thrombosis, it enables future studies regarding the effect of modifying the porcine genotype on sheer-stress-dependent events that characterize xenograft injury. This in-vitro platform is likely to prove broadly useful to study thrombosis and endothelial interactions under dynamic physiologic conditions.
Collapse
Affiliation(s)
- Donald G Harris
- Division of General Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Prabhjot K Benipal
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xiangfei Cheng
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America; Surgical Care Clinical Center, VA Maryland Health Care System, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Vadori M, Cozzi E. Immunological challenges and therapies in xenotransplantation. Cold Spring Harb Perspect Med 2014; 4:a015578. [PMID: 24616201 DOI: 10.1101/cshperspect.a015578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenotransplantation, or the transplantation of cells, tissues, or organs between different species, was proposed a long time ago as a possible solution to the worldwide shortage of human organs and tissues for transplantation. In this setting, the pig is currently seen as the most likely candidate species. In the last decade, progress in this field has been remarkable and includes a better insight into the immunological mechanisms underlying the rejection process. Several immunological hurdles nonetheless remain, such as the strong antibody-mediated and innate or adaptive cellular immune responses linked to coagulation derangements, precluding indefinite xenograft survival. This article reviews our current understanding of the immunological mechanisms involved in xenograft rejection and the potential strategies that may enable xenotransplantation to become a clinical reality in the not-too-distant future.
Collapse
Affiliation(s)
- Marta Vadori
- CORIT (Consortium for Research in Organ Transplantation), Legnaro, 35020 Padua, Italy
| | | |
Collapse
|
18
|
Increased Soluble CD154 (CD40 Ligand) Levels in Xenograft Recipients Correlate With the Development of De Novo Anti-Pig IgG Antibodies. Transplantation 2014; 97:502-8. [DOI: 10.1097/tp.0000000000000042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Iwase H, Ezzelarab MB, Ekser B, Cooper DKC. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation 2014; 21:201-20. [PMID: 24571124 DOI: 10.1111/xen.12085] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for one or more human complement-regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ-source pigs, such as pigs that express one or more coagulation-regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti-platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
20
|
Khalpey Z, Yacoub MH, Smolenski RT. Nucleotide metabolic mismatches in mammalian hearts: implications for transplantation. Ann R Coll Surg Engl 2013. [PMID: 23317713 PMCID: PMC3964664 DOI: 10.1308/003588413x13511609955571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction Human donor organ shortages have led surgeons and scientists to explore the use of animals as alternative organ sources. Acute thrombovascular rejection (AVR) is the main hurdle in xenotransplantation. Disparities in nucleotide metabolism in the vessels of different species may contribute significantly to the microvascular component of AVR. Methods We evaluated the extent of nucleotide metabolism mismatch in selected organs and endothelial cells of different mammals with particular focus on the changes in activity of ecto-5’-nucleotidase (E5’N) elicited by exposure of porcine hearts or endothelial cells to human blood (ex vivo) or human plasma (in vitro). Results E5’N activity in the rat heart was significantly higher than in other species. We noted a significant difference (p<0.001) in E5’N activity between human and pig endothelial cell lines. Initial pig aortic endothelial E5’N activity decreased in vitro after a three-hour exposure to human and porcine plasma while remaining constant in controls. Ex vivo perfusion with fresh human blood for four hours resulted in a significant decrease of E5’N activity in both wild type and transgenic pig hearts overexpressing human decay accelerating factor (p<0.001). Conclusions This study provides evidence that mismatches in basal mammalian metabolic pathways and humoral immunity interact in a xenogeneic environment. Understanding the role of nucleotide metabolism and signalling in xenotransplantation may identify new targets for genetic modifications and may lead to the development of new therapies extending graft survival.
Collapse
Affiliation(s)
- Z Khalpey
- Division of Cardiothoracic Surgery, University of Arizona College of Medicine, 1,501 North Campbell Avenue, PO Box 245071, Tucson, AZ 85724-5071, USA.
| | | | | |
Collapse
|
21
|
Lee KFE, Lu B, Roussel JC, Murray-Segal LJ, Salvaris EJ, Hodgkinson SJ, Hall BM, d'Apice AJF, Cowan PJ, Gock H. Protective effects of transgenic human endothelial protein C receptor expression in murine models of transplantation. Am J Transplant 2012; 12:2363-72. [PMID: 22681753 DOI: 10.1111/j.1600-6143.2012.04122.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thrombosis and inflammation are major obstacles to successful pig-to-human solid organ xenotransplantation. A potential solution is genetic modification of the donor pig to overexpress molecules such as the endothelial protein C receptor (EPCR), which has anticoagulant, anti-inflammatory and cytoprotective signaling properties. Transgenic mice expressing human EPCR (hEPCR) were generated and characterized to test this approach. hEPCR was expressed widely and its compatibility with the mouse protein C pathway was evident from the anticoagulant phenotype of the transgenic mice, which exhibited a prolonged tail bleeding time and resistance to collagen-induced thrombosis. hEPCR mice were protected in a model of warm renal ischemia reperfusion injury compared to wild type (WT) littermates (mean serum creatinine 39.0 ± 2.3 μmol/L vs. 78.5 ± 10.0 μmol/L, p < 0.05; mean injury score 31 ± 7% vs. 56 ± 5%, p < 0.05). Heterotopic cardiac xenografts from hEPCR mice showed a small but significant prolongation of survival in C6-deficient PVG rat recipients compared to WT grafts (median graft survival 6 vs. 5 days, p < 0.05), with less hemorrhage and edema in rejected transgenic grafts. These data indicate that it is possible to overexpress EPCR at a sufficient level to provide protection against transplant-related thrombotic and inflammatory injury, without detrimental effects in the donor animal.
Collapse
Affiliation(s)
- K F E Lee
- Immunology Research Centre, St. Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Watson CJE, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth 2012; 108 Suppl 1:i29-42. [PMID: 22194428 DOI: 10.1093/bja/aer384] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of the last century, organ transplantation has overcome major technical limitations to become the success it is today. The breakthroughs include developing techniques for vascular anastomoses, managing the immune response (initially by avoiding it with the use of identical twins and subsequently controlling it with chemical immunosuppressants), and devising preservation solutions that enable prolonged periods of ex vivo storage while preserving function. One challenge that has remained from the outset is to overcome the shortage of suitable donor organs. The results of organ transplantation continue to improve, both as a consequence of the above innovations and the improvements in peri- and postoperative management. This review describes some of the achievements and challenges of organ transplantation.
Collapse
Affiliation(s)
- C J E Watson
- University Department of Surgery, NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
24
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schmelzle M, Cowan PJ, Robson SC. Which anti-platelet therapies might be beneficial in xenotransplantation? Xenotransplantation 2011; 18:79-87. [PMID: 21496115 DOI: 10.1111/j.1399-3089.2011.00628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xenotransplantation could provide an unlimited and elective supply of grafts, once mechanisms of graft loss and vascular injury are better understood. The development of α-1,3-galactosyltransferase gene-knockout (GalT-KO) swine with the removal of a dominant xeno-antigen has been an important advance; however, delayed xenograft and acute vascular reaction in GalT-KO animals persist. These occur, at least in part, because of humoral reactions that result in vascular injury. Intrinsic molecular incompatibilities in the regulation of blood clotting and extracellular nucleotide homeostasis between discordant species may also predispose to thrombophilia within the vasculature of xenografts. Although limited benefits have been achieved with currently available pharmacological anti-thrombotics and anti-coagulants, the highly complex mechanisms of platelet activation and thrombosis in xenograft rejection also require potent immunosuppressive interventions. We will focus on recent thromboregulatory approaches while elucidating appropriate anti-platelet mechanisms. We will discuss potential benefits of additional anti-thrombotic interventions that are possible in transgenic swine and review recent developments in pharmacological anti-platelet therapy.
Collapse
Affiliation(s)
- Moritz Schmelzle
- Liver Center and Transplantation Institute, Department of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Wang C, Wang H, Ide K, Wang Y, Van Rooijen N, Ohdan H, Yang YG. Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPα capable of binding to human CD47. Cell Transplant 2011; 20:1915-20. [PMID: 21535911 DOI: 10.3727/096368911x566253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal regulatory protein α (SIRPα) is a critical immune inhibitory receptor on macrophages, and its interaction with CD47 prevents autologous phagocytosis. We have previously shown that pig CD47 does not interact with human SIRPα, and that human CD47 expression inhibits phagocytosis of porcine cells by human macrophages in vitro. In this study, we have investigated the potential of human CD47 expression to promote porcine cell survival in vivo. Human CD47-expressing and control porcine B-lymphoma cells were transplanted into T- and B-cell-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice that express SIRPα capable of interacting with human CD47. Only the human CD47-expressing porcine lymphoma cells survived and were able to form tumors in NOD/SCID mice; however, both the control and human CD47-expressing porcine cells survived in macrophage-depleted NOD/SCID mice. These results indicate that transgenic expression of human CD47 may provide an effective approach to inhibiting macrophage-mediated xenograft rejection in clinical xenotransplantation.
Collapse
Affiliation(s)
- Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Deletion of the α1,3-galactosyltransferase (GalT) gene in pigs has removed a major xenoantigen but has not eliminated the problem of dysregulated coagulation and vascular injury. Rejecting GalT knockout organ xenografts almost invariably show evidence of thrombosis and platelet sequestration, and primate recipients frequently develop consumptive coagulopathy. This review examines recent findings that illuminate potential mechanisms of this current barrier to successful xenotransplantation. RECENT FINDINGS The coagulation response to xenotransplantation differs depending on the type of organ and quite likely the distinct vasculatures. Renal xenografts appear more likely to initiate consumptive coagulopathy than cardiac xenografts, possibly reflecting differential transcriptional responses. Liver xenografts induce rapid and profound thrombocytopenia resulting in recipient death within days due to bleeding; ex-vivo data suggest that liver endothelial cells and hepatocytes are responsible for platelet consumption by a coagulation-independent process.It has been proposed that expression of recipient tissue factor on platelets and monocytes is an important trigger of consumptive coagulopathy. Finally, pigs transgenic for human anticoagulants and antithrombotics are slowly but surely coming on line, but have not yet been rigorously tested to date. SUMMARY Successful control of coagulation dysregulation in xenotransplantation may require different combinatorial pharmacological and genetic strategies for different organs.
Collapse
Affiliation(s)
- Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, and Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
28
|
Ekser B, Kumar G, Veroux M, Cooper DKC. Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Curr Opin Organ Transplant 2011; 16:222-30. [PMID: 21415825 PMCID: PMC3095213 DOI: 10.1097/mot.0b013e3283446c3c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Solid organ xenotransplantation could be the future of transplantation, but improved outcomes are required in experimental models before clinical trials are justified. This review summarizes recent advances in solid organ xenotransplantation using organs from α1,3-galactosyltransferase gene-knockout (GTKO) pigs (with or without other genetic modifications) and novel therapeutic approaches. RECENT FINDINGS Work on the development of genetically engineered pigs has been considerable during the past few years, with many research institutes reporting the outcomes of research. Multiple gene modifications on a GTKO background have been reported, and the results of transplantation using organs from these pigs have been published. Progress, however, has been variable, and several obstacles, for example, coagulation dysregulation, have been identified. Heterotopic pig heart xenotransplantation has been associated with graft survival up to 8 months, but kidney graft survival has not improved significantly. SUMMARY The availability of GTKO pigs with additional genetic modifications aimed toward expression of multiple complement-regulatory proteins and/or human thromboregulatory genes, combined with novel immunosuppressive regimens, for example, the inclusion of B cell-depleting agents, should improve pig organ survival in the near future.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
29
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update: February-March, 2010. Xenotransplantation 2010; 17:256-60. [DOI: 10.1111/j.1399-3089.2010.00593.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|