1
|
Jo EA, Min S, Jo AJ, Han A, Ha J, Song EY, Lee H, Kim YC. The time-dependent changes in serum immunoglobulin after kidney transplantation and its association with infection. Front Immunol 2024; 15:1374535. [PMID: 38707898 PMCID: PMC11066164 DOI: 10.3389/fimmu.2024.1374535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Kidney transplant recipients often experience significant alterations in their immune system, which can lead to increased susceptibility to infections. This study aimed to analyze time-dependent changes in serum immunoglobulin and complement levels and determine the risk factors associated with infection. Methods A retrospective analysis of serum samples from 192 kidney transplant recipients who received transplantations between August 2016 and December 2019 was conducted. The serum samples were obtained at preoperative baseline (T0), postoperative 2 weeks (T1), 3 months (T2), and 1 year (T3). The levels of serum C3, C4, IgG, IgA, and IgM were measured to evaluate immune status over time. Results The analysis revealed significant decreases in IgG and IgA levels at T1. This period was associated with the highest occurrence of hypogammaglobulinemia (HGG) and hypocomplementemia (HCC), as well as an increased incidence of severe infection requiring hospitalization and graft-related viral infections. Using a time-dependent Cox proportional hazards model adjusted for time-varying confounders, HGG was significantly associated with an increased risk of infection requiring hospitalization (HR, 1.895; 95% CI: 1.871-1.920, P-value<0.001) and graft-related viral infection (HR, 1.152; 95% CI: 1.144-1.160, P-value<0.001). Discussion The findings suggest that monitoring serum immunoglobulin levels post-transplant provides valuable insights into the degree of immunosuppression. Hypogammaglobulinemia during the early post-transplant period emerges as a critical risk factor for infection, indicating that serum immunoglobulins could serve as feasible biomarkers for assessing infection risk in kidney transplant recipients.
Collapse
Affiliation(s)
- Eun-Ah Jo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ae jung Jo
- Department of Information Statistics, Andong National University, Andong, Republic of Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Nephrology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Mouse Sertoli Cells Inhibit Humoral-Based Immunity. Int J Mol Sci 2022; 23:ijms232112760. [DOI: 10.3390/ijms232112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Transplantation is used to treat many different diseases; however, without the use of immunosuppressants, which can be toxic to the patient, grafted tissue is rejected by the immune system. Humoral immune responses, particularly antibodies and complement, are significant components in rejection. Remarkably, Sertoli cells (SCs), immunoregulatory testicular cells, survive long-term after transplantation without immunosuppression. The objective of this study was to assess SC regulation of these humoral-based immune factors. Mouse SCs survived in vitro human complement (model of robust complement-mediated rejection) and survived in vivo as allografts with little-to-no antibody or complement fragment deposition. Microarray data and ELISA analyses identified at least 14 complement inhibitory proteins expressed by mouse SCs, which inhibit complement at multiple points. Interestingly, a mouse SC line (MSC-1), which was rejected by day 20 post transplantation, also survived in vitro human complement, showed limited deposition of antibodies and complement, and expressed complement inhibitors. Together this suggests that SC inhibition of complement-mediated killing is an important component of SC immune regulation. However, other mechanisms of SC immune modulation are also likely involved in SC graft survival. Identifying the mechanisms that SCs use to achieve extended survival as allografts could be utilized to improve graft survival.
Collapse
|
4
|
Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 2021; 43:757-771. [PMID: 34698894 PMCID: PMC8547127 DOI: 10.1007/s00281-021-00892-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The ability of the complement system to rapidly and broadly react to microbial intruders, apoptotic cells and other threats by inducing forceful elimination responses is indispensable for its role as host defense and surveillance system. However, the danger sensing versatility of complement may come at a steep price for patients suffering from various immune, inflammatory, age-related, or biomaterial-induced conditions. Misguided recognition of cell debris or transplants, excessive activation by microbial or damaged host cells, autoimmune events, and dysregulation of the complement response may all induce effector functions that damage rather than protect host tissue. Although complement has long been associated with disease, the prevalence, impact and complexity of complement’s involvement in pathological processes is only now becoming fully recognized. While complement rarely constitutes the sole driver of disease, it acts as initiator, contributor, and/or exacerbator in numerous disorders. Identifying the factors that tip complement’s balance from protective to damaging effects in a particular disease continues to prove challenging. Fortunately, however, molecular insight into complement functions, improved disease models, and growing clinical experience has led to a greatly improved understanding of complement’s pathological side. The identification of novel complement-mediated indications and the clinical availability of the first therapeutic complement inhibitors has also sparked a renewed interest in developing complement-targeted drugs, which meanwhile led to new approvals and promising candidates in late-stage evaluation. More than a century after its description, complement now has truly reached the clinic and the recent developments hold great promise for diagnosis and therapy alike.
Collapse
|
5
|
Newly characterized bovine mammary stromal region with epithelial properties supports representative epithelial outgrowth development from transplanted stem cells. Cell Tissue Res 2021; 387:39-61. [PMID: 34698917 DOI: 10.1007/s00441-021-03545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Limited outgrowth development of bovine mammary epithelial stem cells transplanted into de-epithelialized mouse fat pads restricts advanced studies on this productive organ's development and renewal. We challenged the mouse-bovine incompatibility by implanting parenchymal adjacent or distant bovine stromal layers (close and far stroma, respectively) into the mouse fat pad to serve as an endogenous niche for transplanted stem cells. The close stroma better supported stem cell take rate and outgrowth development. The diameter of these open duct-like structures represented and occasionally exceeded that of the endogenous ducts and appeared 8.3-fold wider than the capsule-like structures developed in the mouse fat pad after similar cell transplantation. RNA-Seq revealed lower complement activity in this layer, associated with secretion of specific laminins and WNT proteins favoring epithelial outgrowth development. The close stroma appeared genetically more similar to the parenchyma than to the far stroma due to epithelial characteristics, mainly of fibroblasts, including expression of epithelial markers, milk protein genes, and functional mammary claudins. Gene markers and activators of the mesenchymal-to-epithelial transition were highly enriched in the epithelial gene cluster and may contribute to the acquired epithelial properties of this stromal layer.
Collapse
|
6
|
Multiplex gene analysis reveals T-cell and antibody-mediated rejection-specific upregulation of complement in renal transplants. Sci Rep 2021; 11:15464. [PMID: 34326417 PMCID: PMC8322413 DOI: 10.1038/s41598-021-94954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.
Collapse
|
7
|
Kielar M, Gala-Błądzińska A, Dumnicka P, Ceranowicz P, Kapusta M, Naumnik B, Kubiak G, Kuźniewski M, Kuśnierz-Cabala B. Complement Components in the Diagnosis and Treatment after Kidney Transplantation-Is There a Missing Link? Biomolecules 2021; 11:biom11060773. [PMID: 34064132 PMCID: PMC8224281 DOI: 10.3390/biom11060773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, kidney transplantation is widely accepted as the renal replacement therapy allowing for the best quality of life and longest survival of patients developing end-stage renal disease. However, chronic transplant rejection, recurrence of previous kidney disease or newly acquired conditions, or immunosuppressive drug toxicity often lead to a deterioration of kidney allograft function over time. Complement components play an important role in the pathogenesis of kidney allograft impairment. Most studies on the role of complement in kidney graft function focus on humoral rejection; however, complement has also been associated with cell mediated rejection, post-transplant thrombotic microangiopathy, the recurrence of several glomerulopathies in the transplanted kidney, and transplant tolerance. Better understanding of the complement involvement in the transplanted kidney damage has led to the development of novel therapies that inhibit complement components and improve graft survival. The analysis of functional complotypes, based on the genotype of both graft recipient and donor, may become a valuable tool for assessing the risk of acute transplant rejection. The review summarizes current knowledge on the pathomechanisms of complement activation following kidney transplantation and the resulting diagnostic and therapeutic possibilities.
Collapse
Affiliation(s)
- Małgorzata Kielar
- St. Louis Regional Children’s Hospital, Medical Diagnostic Laboratory with a Bacteriology Laboratory, Strzelecka 2 St., 31-503 Kraków, Poland;
| | - Agnieszka Gala-Błądzińska
- Medical College of Rzeszów University, Institute of Medical Sciences, Kopisto 2A Avn., 35-310 Rzeszów, Poland;
| | - Paulina Dumnicka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medical Diagnostics, Medyczna 9 St., 30-688 Kraków, Poland;
| | - Piotr Ceranowicz
- Jagiellonian University Medical College, Faculty of Medicine, Department of Physiology, Grzegórzecka 16 St., 31-531 Kraków, Poland;
| | - Maria Kapusta
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
| | - Beata Naumnik
- Medical University of Białystok, Faculty of Medicine, 1st Department of Nephrology and Transplantation with Dialysis Unit, Żurawia 14 St., 15-540 Białystok, Poland;
| | - Grzegorz Kubiak
- Catholic University of Leuven, Department of Cardiovascular Diseases, 3000 Leuven, Belgium;
| | - Marek Kuźniewski
- Jagiellonian University Medical College, Faculty of Medicine, Chair and Department of Nephrology, Jakubowskiego 2 St., 30-688 Kraków, Poland;
| | - Beata Kuśnierz-Cabala
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Clinical Biochemistry, Department of Diagnostics, Kopernika 15A St., 31-501 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-424-83-65
| |
Collapse
|
8
|
Lo S, Jiang L, Stacks S, Lin H, Parajuli N. Aberrant activation of the complement system in renal grafts is mediated by cold storage. Am J Physiol Renal Physiol 2021; 320:F1174-F1190. [PMID: 33998295 DOI: 10.1152/ajprenal.00670.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant complement activation leads to tissue damage during kidney transplantation, and it is recognized as an important target for therapeutic intervention. However, it is not clear whether cold storage (CS) triggers the complement pathway in transplanted kidneys. The goal of the present study was to determine the impact of CS on complement activation in renal transplants. Male Lewis and Fischer rats were used, and donor rat kidneys were exposed to 4 h or 18 h of CS followed by transplantation (CS + transplant). To study CS-induced effects, a group with no CS was included in which the kidney was removed and transplanted back to the same rat [autotransplantation (ATx)]. Complement proteins (C3 and C5b-9) were evaluated with Western blot analysis (reducing and nonreducing conditions) and immunostaining. Western blot analysis of renal extracts or serum indicated that the levels of C3 and C5b-9 increased after CS + transplant compared with ATx. Quite strikingly, intracellular C3 was profoundly elevated within renal tubules after CS + transplant but was absent in sham or ATx groups, which showed only extratubular C3. Similarly, C5b-9 immunofluorescence staining of renal sections showed an increase in C5b-9 deposits in kidneys after CS + transplant. Real-time PCR (SYBR green) showed increased expression of CD11b and CD11c, components of complement receptors 3 and 4, respectively, as well as inflammatory markers such as TNF-α. In addition, recombinant TNF-α significantly increased C3 levels in renal cells. Collectively, these results demonstrate that CS mediates aberrant activation of the complement system in renal grafts following transplantation.NEW & NOTEWORTHY This study highlights cold storage-mediated aberrant activation of complement components in renal allografts following transplantation. Specifically, the results demonstrate, for the first time, that cold storage functions in exacerbation of C5b-9, a terminal cytolytic membrane attack complex, in renal grafts following transplantation. In addition, the results indicated that cold storage induces local C3 biogenesis in renal proximal cells/tubules and that TNF-α promotes C3 biogenesis and activation in renal proximal tubular cells.
Collapse
Affiliation(s)
- Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Savannah Stacks
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
10
|
Danobeitia JS, Zens TJ, Chlebeck PJ, Zitur LJ, Reyes JA, Eerhart MJ, Coonen J, Capuano S, D’Alessandro AM, Torrealba JR, Burguete D, Brunner K, Amersfoort E, Ponstein-Simarro Doorten Y, Van Kooten C, Jankowska-Gan E, Burlingham W, Sullivan J, Djamali A, Pozniak M, Yankol Y, Fernandez LA. Targeted donor complement blockade after brain death prevents delayed graft function in a nonhuman primate model of kidney transplantation. Am J Transplant 2020; 20:1513-1526. [PMID: 31922336 PMCID: PMC7261643 DOI: 10.1111/ajt.15777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/25/2023]
Abstract
Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival. BD donors were maintained for 20 hours; kidneys were procured and stored at 4°C for 43-48 hours prior to implantation into ABO-compatible, nonsensitized, MHC-mismatched recipients. Animals were divided into 3 donor-treatment groups: G1 - vehicle, G2 - rhC1INH+heparin, and G3 - heparin. G2 donors showed significant reduction in classical complement pathway activation and decreased levels of tumor necrosis factor α and monocyte chemoattractant protein 1. DGF was diagnosed in 4/6 (67%) G1 recipients, 3/3 (100%) G3 recipients, and 0/6 (0%) G2 recipients (P = .008). In addition, G2 recipients showed superior renal function, reduced sC5b-9, and reduced urinary neutrophil gelatinase-associated lipocalin in the first week posttransplant. We observed no differences in incidence or severity of graft rejection between groups. Collectively, the data indicate that donor-management targeting complement activation prevents the development of DGF. Our results suggest a pivotal role for complement activation in BD-induced renal injury and postulate complement blockade as a promising strategy for the prevention of DGF after transplantation.
Collapse
Affiliation(s)
- Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tiffany J. Zens
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer Coonen
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saverio Capuano
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jose R. Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel Burguete
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Brunner
- Wisconsin Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewa Jankowska-Gan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Arjang Djamali
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
11
|
Kardol-Hoefnagel T, Budding K, van de Graaf EA, van Setten J, van Rossum OA, Oudijk EJD, Otten HG. A Single Nucleotide C3 Polymorphism Associates With Clinical Outcome After Lung Transplantation. Front Immunol 2019; 10:2245. [PMID: 31616421 PMCID: PMC6775212 DOI: 10.3389/fimmu.2019.02245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Development of chronic rejection is still a severe problem and causes high mortality rates after lung transplantation (LTx). Complement activation is important in the development of acute rejection (AR) and bronchiolitis obliterans syndrome, with C3 as a key complement factor. Methods: We investigated a single nucleotide polymorphism (SNP) in the C3 gene (rs2230199) in relation to long-term outcome after LTx in 144 patient-donor pairs. In addition, we looked at local production of donor C3 by analyzing bronchoalveolar lavage fluid (BALF) of 6 LTx patients using isoelectric focusing (IEF). Results: We demonstrated the presence of C3 in BALF and showed that this is produced by the donor lung based on the genotype of SNP rs2230199. We also analyzed donor and patient SNP configurations and observed a significant association between the SNP configuration in patients and episodes of AR during 4-years follow-up. Survival analysis showed a lower AR-free survival in homozygous C3 slow patients (p = 0.005). Furthermore, we found a significant association between the SNP configuration in donors and BOS development. Patients receiving a graft from a donor with at least one C3 fast variant for rs2230199 had an inferior BOS-free survival (p = 0.044). Conclusions: In conclusion, our data indicate local C3 production by donor lung cells. In addition, a single C3 SNP present in recipients affects short-term outcome after LTx, while this SNP in donors has an opposite effect on long-term outcome after LTx. These results could contribute to an improved risk stratification after transplantation.
Collapse
Affiliation(s)
- Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Oliver A van Rossum
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Erik-Jan D Oudijk
- Center of Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Henderikus G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Tamura K, Tohyama T, Watanabe J, Nakamura T, Ueno Y, Inoue H, Honjo M, Sakamoto K, Takai A, Ogawa K, Takada Y. Preformed donor-specific antibodies are associated with 90-day mortality in living-donor liver transplantation. Hepatol Res 2019; 49:929-941. [PMID: 30991451 DOI: 10.1111/hepr.13352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/07/2019] [Indexed: 12/19/2022]
Abstract
AIM The impact of donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) on living donor liver transplantation (LDLT) is unclear. The aim of this study was to investigate the association between DSAs and short-term outcomes in LDLT recipients, and to clarify the clinical impact of DSAs. METHOD Anti-HLA antibodies were screened in preoperative serum samples taken from 40 liver transplant recipients at Ehime University (Toon, Japan) between August 2001 and July 2015. Screening was carried out using the Flow-PRA method, and DSAs were detected in anti-HLA antibody-positive recipients using the Luminex single-antigen identification test. A mean fluorescence intensity of 1000 was used as the cut-off for positivity. We retrospectively reviewed the clinical courses of patients who were DSA-positive to elucidate early clinical manifestations in LDLT recipients. RESULTS Fifteen (12 female and 3 male) patients (38%) had anti-HLA antibodies. Eight of the 15 anti-HLA antibody-positive patients were positive for DSAs, and all were women. The 90-day survival rate of DSA-positive patients (50%) was significantly lower than that of DSA-negative patients (84.4%) (0.0112; Wilcoxon test). On univariate analysis, the DSA-positive rate was significantly higher in the 90-day mortality group. Postoperatively, the incidence of acute cellular rejection was higher in DSA-positive than DSA-negative patients. Thrombotic microangiopathy developed only in DSA-positive patients. We found no relationship between DSA status and bile duct stricture. CONCLUSION Preformed DSAs could be associated with elevated 90-day mortality in LDLT recipients. Further large-scale studies are required to verify the risk associated with DSAs in LDLT.
Collapse
Affiliation(s)
- Kei Tamura
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Taiji Tohyama
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Jota Watanabe
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Taro Nakamura
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshitomo Ueno
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hitoshi Inoue
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masahiko Honjo
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Katsunori Sakamoto
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akihiro Takai
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kohei Ogawa
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yasutsugu Takada
- Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
13
|
Yoon CH, Choi SH, Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection in pig-to-non-human primate corneal xenotransplantation. Xenotransplantation 2019; 26:e12515. [PMID: 30983050 DOI: 10.1111/xen.12515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
We investigated the predictive biomarkers for graft rejection in pig-to-non-human primate (NHP) full-thickness corneal xenotransplantation (n = 34). The graft score (0-12) was calculated based on opacity, edema, and vascularization. Scores ≥ 6 were defined as rejection. NHPs were divided into two groups: (a) graft rejection within 6 months; and (b) graft survival until 6 months. In the evaluation of 2-week biomarkers, none of the NHPs showed rejection within 2 weeks and the 34 NHPs were divided into two groups: (a) entire rejection group (n = 16); and (b) survival group (n = 18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 weeks were excluded and the remaining 30 NHPs were divided into two groups: (a) late rejection group (n = 12); and (b) survival group (n = 18). Analysis of biomarker candidates included T/B-cell subsets, levels of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous humor (AH). CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 were significantly elevated in the rejection group. Receiver operating characteristic areas under the curve was highest for AH C3a (0.847) followed by CD8+ IFNγ+ cells (both the concentration and percentage: 0.715), indicating excellent or acceptable discrimination ability, which suggests that CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in pig-to-NHP corneal xenotransplantation.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
14
|
Patel SY, Carbone J, Jolles S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front Immunol 2019; 10:33. [PMID: 30800120 PMCID: PMC6376447 DOI: 10.3389/fimmu.2019.00033] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antibody deficiency or hypogammaglobulinemia can have primary or secondary etiologies. Primary antibody deficiency (PAD) is the result of intrinsic genetic defects, whereas secondary antibody deficiency may arise as a consequence of underlying conditions or medication use. On a global level, malnutrition, HIV, and malaria are major causes of secondary immunodeficiency. In this review we consider secondary antibody deficiency, for which common causes include hematological malignancies, such as chronic lymphocytic leukemia or multiple myeloma, and their treatment, protein-losing states, and side effects of a number of immunosuppressive agents and procedures involved in solid organ transplantation. Secondary antibody deficiency is not only much more common than PAD, but is also being increasingly recognized with the wider and more prolonged use of a growing list of agents targeting B cells. SAD may thus present to a broad range of specialties and is associated with an increased risk of infection. Early diagnosis and intervention is key to avoiding morbidity and mortality. Optimizing treatment requires careful clinical and laboratory assessment and may involve close monitoring of risk parameters, vaccination, antibiotic strategies, and in some patients, immunoglobulin replacement therapy (IgRT). This review discusses the rapidly evolving list of underlying causes of secondary antibody deficiency, specifically focusing on therapies targeting B cells, alongside recent advances in screening, biomarkers of risk for the development of secondary antibody deficiency, diagnosis, monitoring, and management.
Collapse
Affiliation(s)
- Smita Y. Patel
- Clinical Immunology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Javier Carbone
- Clinical Immunology Department, Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
15
|
Distribution of Anti-ABO Immunoglobulin G Subclass and C1q Antibody in ABO-incompatible Kidney Transplantation. Transplant Proc 2018; 50:1063-1067. [PMID: 29731066 DOI: 10.1016/j.transproceed.2018.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION To investigate the correlation between serum anti-ABO immunoglobulin G (IgG) and IgG subclasses, anti-ABO IgG subclasses were measured by flow cytometry (FCM) in ABO-incompatible (ABOi) kidney transplant recipients. We also evaluated baseline anti-ABO C1q antibody. METHOD Baseline anti-ABO IgG titers were measured by both FCM and column agglutination technique methods in 18 ABOi kidney transplant recipients. The mean florescence intensity (MFI) ratios of baseline anti-ABO IgG subclasses and anti-ABO C1q antibody were obtained by FCM and followed-up after rituximab treatment, each plasmapheresis (PP) session, and kidney transplantation. Correlation between the values of IgG subclass and total IgG titer was analyzed. RESULTS The baseline MFI ratios of total IgG, IgG1, IgG2, IgG3, and IgG4 were 202.46, 62.41, 30.01, 1.04, and 1.13, respectively. The MFI ratios of IgG1, IgG2, and total IgG measured at baseline and pre-PP were positively correlated with the baseline ABO titer was measured using the column agglutination technique. The numbers of PP sessions to reach the target titer were correlated with the baseline IgG and IgG1 levels. IgG1 and IgG2 as well as total IgG were removed effectively after serial PP. Anti-ABO C1q antibody was neither detected nor correlated with total IgG and any IgG subclasses. CONCLUSIONS Our findings suggest that IgG1 and IgG2 are the dominant IgG subclass in ABOi kidney transplant recipients. Baseline levels of IgG1 and IgG2 were correlated with baseline total IgG titer. However, anti-ABO C1q antibody was not detected in the present study.
Collapse
|
16
|
Renal Transplant Patients Biopsied for Cause and Tested for C4d, DSA, and IgG Subclasses and C1q: Which Humoral Markers Improve Diagnosis and Outcomes? J Immunol Res 2017; 2017:1652931. [PMID: 28182088 PMCID: PMC5274655 DOI: 10.1155/2017/1652931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
The association between donor specific antibodies (DSA) and renal transplant rejection has been generally established, but there are cases when a DSA is present without rejection. We examined 73 renal transplant recipients biopsied for transplant dysfunction with DSA test results available: 23 patients diffusely positive for C4d (C4d+), 25 patients focally positive for C4d, and 25 patients negative for C4d (C4d−). We performed C1q and IgG subclass testing in our DSA+ and C4d+ patient group. Graft outcomes were determined for the C4d+ group. All 23 C4d+ patients had IgG DSA with an average of 12,500 MFI (cumulative DSA MFI). The C4d− patients had average DSA less than 500 MFI. Among the patients with C4d+ biopsies, 100% had IgG DSA, 70% had C1q+ DSA, and 83% had complement fixing IgG subclass antibodies. Interestingly, IgG4 was seen in 10 of the 23 recipients' sera, but always along with complement fixing IgG1, and we have previously seen excellent function in patients when IgG4 DSA exists alone. Cumulative DSA above 10,000 MFI were associated with C4d deposition and complement fixation. There was no significant correlation between graft loss and C1q positivity, and IgG subclass analysis seemed to be a better correlate for complement fixing antibodies in the C4d+ patient group.
Collapse
|
17
|
Emerging Roles for Epigenetic Programming in the Control of Inflammatory Signaling Integration in Heath and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:63-90. [PMID: 28921465 DOI: 10.1007/978-981-10-5987-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages and dendritic cells initiate the innate immune response to infection and injury and contribute to inflammatory signaling to maintain the homeostasis of various tissues, which includes resident macrophages for the elimination of invading microorganisms and tissue damage. Inappropriate inflammatory signaling can lead to persistent inflammation and further develop into autoimmune and inflammation-associated diseases. Inflammatory signaling pathways have been well characterized, but how these signaling pathways are converted into sustained and diverse patterns of expression of cytokines, chemokines, and other genes in response to environmental challenges is unclear. Emerging evidence suggests the important role of epigenetic mechanisms in finely tuning the outcome of the host innate immune response. An understanding of epigenetic regulation of innate immune cell identity and function will enable the identification of the mechanism between gene-specific host defenses and inflammatory disease and will also allow for exploration of the program of innate immune memory in health and disease. This information could be used to develop therapeutic agents to enhance the host response, preventing chronic inflammation through preserving tissues and signaling integrity.
Collapse
|
18
|
Ding SI, Xie J, Wan Q. Association Between Cytokines and Their Receptor Antagonist Gene Polymorphisms and Clinical Risk Factors and Acute Rejection Following Renal Transplantation. Med Sci Monit 2016; 22:4736-4741. [PMID: 27913812 PMCID: PMC5142584 DOI: 10.12659/msm.898193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Acute rejection (AR) after renal transplantation affects both patient and graft survival. There is growing evidence of the genetic association between cytokine or its receptor antagonist and AR in solid organ transplantation. The objectives of this study were to investigate the role of recipient TNF β, IL-10, IL-1β, and IL-1 receptor antagonist (ra) gene polymorphism, as well as traditional clinical variables such as panel-reactive antibody (PRA) levels, donor type, and HLA mismatches in AR following renal transplantation. MATERIAL AND METHODS TNF β (+252A/G), IL-10 (-592A/C), IL-1β (-511C/T) and IL-1ra (86 bp VNTR) gene polymorphisms were determined in 195 renal allograft recipients with and without AR, using PCR. Both these genotypic variants and clinical risk factors were investigated for correlation with AR within the first year after renal transplantation. RESULTS Patients with increased pre-transplant PRA levels (P<0.001) and donor type (P=0.012) were prone to the development of AR. After adjusting for all variables of P<0.2, a PRA level >10% (OR=4.515, 95% confidence intervals=1.738-11.727, P=0.002) and the receipt of a graft from a donation after cardiac death (DCD) donor (OR=2.437, 95% confidence intervals=1.047-5.673, P=0.039) remained significantly associated with AR in a multivariate logistic regression analysis. No correlation could be found between recipients with an episode and absence of acute rejection and the gene polymorphisms of these cytokines investigated in the present study. CONCLUSIONS This study shows that the presence of increased pre-transplant levels of PRA and the receipt of a graft from DCD donor other than cytokine gene polymorphisms are significant risk factors for AR in renal transplantation. To reduce the occurrence of AR, clinicians should take necessary measures to lower the PRA levels and pay more attention to patients who received a graft from a DCD donor.
Collapse
Affiliation(s)
- SIqing Ding
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jianfei Xie
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
19
|
Role of ficolin-3 in acute kidney graft rejection: A new diagnostic tool. INDIAN JOURNAL OF TRANSPLANTATION 2015. [DOI: 10.1016/j.ijt.2015.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins. Mol Immunol 2015; 67:193-205. [PMID: 26052070 DOI: 10.1016/j.molimm.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
The complement system plays a central role in a number of human inflammatory diseases, and there is a significant need for development of complement-directed therapies. The discovery of an arsenal of anti-complement proteins secreted by the pathogen Staphylococcus aureus brought with it the potential for harnessing the powerful inhibitory properties of these molecules. One such family of inhibitors, the SCINs, interact with a functional "hot-spot" on the surface of C3b. SCINs not only stabilize an inactive form of the alternative pathway (AP) C3 convertase (C3bBb), but also overlap the C3b binding site of complement factors B and H. Here we determined that a conserved Arg residue in SCINs is critical for function of full-length SCIN proteins. Despite this, we also found SCIN-specific differences in the contributions of other residues found at the C3b contact site, which suggested that a more diverse repertoire of residues might be able to recognize this region of C3b. To investigate this possibility, we conducted a phage display screen aimed at identifying SCIN-competitive 12-mer peptides. In total, seven unique sequences were identified and all exhibited direct C3b binding. A subset of these specifically inhibited the AP in assays of complement function. The mechanism of AP inhibition by these peptides was probed through surface plasmon resonance approaches, which revealed that six of the seven peptides disrupted C3bBb formation by interfering with factor B/C3b binding. To our knowledge this study has identified the first small molecules that retain inhibitory properties of larger staphylococcal immune evasion proteins.
Collapse
|
21
|
Scambi C, Ugolini S, Jokiranta TS, De Franceschi L, Bortolami O, La Verde V, Guarini P, Caramaschi P, Ravagnani V, Martignoni G, Colato C, Pedron S, Benedetti F, Sorio M, Poli F, Biasi D. The local complement activation on vascular bed of patients with systemic sclerosis: a hypothesis-generating study. PLoS One 2015; 10:e0114856. [PMID: 25658605 PMCID: PMC4319765 DOI: 10.1371/journal.pone.0114856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 11/13/2014] [Indexed: 11/26/2022] Open
Abstract
Objective The role of complement system in the pathogenesis of systemic sclerosis (SSc) has been debated during the last decade but an evident implication in this disease has never been found. We carried out an explorative study on SSc patients to evaluate the expression of soluble and local C5b-9 complement complex and its relation with a complement regulator, the Membrane Cofactor Protein (MCP, CD46) on skin vascular bed as target distinctive of SSc disease. We also analyzed two polymorphic variants in the complement activation gene cluster involving the MCP region. Methods C5b-9 plasma levels of SSc patients and healthy subjects were analyzed by ELISA assay. Archival skin biopsies of SSc patients and controls were subjected to immunofluorescence analysis to detect C5b-9 and MCP on vascular endothelial cells. The expression of MCP was validated by immunoblot analysis with specific antibody. Polymorphic variants in the MCP gene promoter were tested by a quantitative PCR technique-based allelic discrimination method. Results Even though circulating levels of C5b-9 did not differ between SSc and controls, C5b-9 deposition was detected in skin biopsies of SSc patients but not in healthy subjects. MCP was significantly lower in skin vessels of SSc patients than in healthy controls and was associated with the over-expression of two polymorphic variants in the MCP gene promoter, which has been related to more aggressive phenotypes in other immune-mediated diseases. Conclusions Our results firsty document the local complement activation with an abnormal expression of MCP in skin vessels of SSc patients, suggesting that a subset of SSc patients might be exposed to more severe organ complications and clinical evolution due to abnormal local complement activation.
Collapse
Affiliation(s)
- Cinzia Scambi
- Department of Medicine, University of Verona, Verona, Italy
- * E-mail:
| | - Sara Ugolini
- Department of Medicine, University of Verona, Verona, Italy
| | - T. Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | | | - Oscar Bortolami
- Research Support Unit and Biostatistics, Verona University Hospital, Verona, Italy
| | | | | | | | | | - Guido Martignoni
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Chiara Colato
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Serena Pedron
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | - Marco Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Fabio Poli
- Department of Medicine, University of Verona, Verona, Italy
| | - Domenico Biasi
- Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Hein E, Garred P. The Lectin Pathway of Complement and Biocompatibility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:77-92. [PMID: 26306444 DOI: 10.1007/978-3-319-18603-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contact activation, the coagulation system and the complement system. The complement system is an important part of the initial immune response and consists of fluid phase molecules in the blood stream. Three different activation pathways can initiate the complement system, the lectin, the classical and the alternative pathway, all converging in an amplification loop of the cascade system and downstream reactions. Thus, when exposed to foreign substances complement components will be activated and lead to a powerful inflammatory response. Biosurface induced complement activation is a recognised issue that has been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field.
Collapse
Affiliation(s)
- Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen O, Denmark
| | | |
Collapse
|
23
|
Shah RJ, Emtiazjoo AM, Diamond JM, Smith PA, Roe DW, Wille KM, Orens JB, Ware LB, Weinacker A, Lama VN, Bhorade SM, Palmer SM, Crespo M, Lederer DJ, Cantu E, Eckert GJ, Christie JD, Wilkes DS. Plasma complement levels are associated with primary graft dysfunction and mortality after lung transplantation. Am J Respir Crit Care Med 2014; 189:1564-7. [PMID: 24930532 DOI: 10.1164/rccm.201312-2121le] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rupal J Shah
- 1 University of Pennsylvania Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Takeshita A, Kusakabe KT, Hiyama M, Kuniyoshi N, Kondo T, Kano K, Kiso Y, Okada T. Dynamics and reproductive effects of complement factors in the spontaneous abortion model of CBA/J×DBA/2 mice. Immunobiology 2014; 219:385-91. [DOI: 10.1016/j.imbio.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/04/2013] [Accepted: 01/03/2014] [Indexed: 11/16/2022]
|
25
|
Wu X, Wan Q, Ye Q, Zhou J. Mannose-binding lectin-2 and ficolin-2 gene polymorphisms and clinical risk factors for acute rejection in kidney transplantation. Transpl Immunol 2014; 30:71-5. [PMID: 24486561 DOI: 10.1016/j.trim.2013.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is growing evidence that the lectin pathway is significantly associated with acute rejection. Rare studies associated both gene polymorphisms of MBL2 and FCN2 with acute rejection after kidney transplantation. The aim of the present study was to investigate the role of the lectin gene profile and clinical risk factors such as PRA level on acute rejection in kidney transplant recipients. METHODS We prospectively analyzed 157 kidney transplant recipients with and without acute rejection. A total of 6 well-known functional single-nucleotide polymorphisms in the MBL2 gene and 5 in the FCN2 gene of the recipients were determined by gene sequencing. MBL2 and FCN2 genotypic variants were analyzed for association with the incidence of acute rejection within the first year after kidney transplantation. RESULTS After adjusting for variables of P<0.2, we found the differences in the incidence of acute rejection were only according to panel-reactive antibodies (odds ratios (OR) = 6.468, 95% confidence intervals (CI)= 2.017-20.740, P = 0.002) and the HH genotypes of MBL2 promoter -550 (OR = 2.448, 95%CI = 1.026-5.839, P = 0.044). CONCLUSION Panel-reactive antibodies and the HH genotypes of MBL2 promoter -550 have significant impacts on the risk of developing acute rejection after kidney transplantation.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Nursing Department, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Qiquan Wan
- Department of Transplant Surgery, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Qifa Ye
- Department of Transplant Surgery, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jiandang Zhou
- Department of Clinical Laboratory of Microbiology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
26
|
Clinical immune-monitoring strategies for predicting infection risk in solid organ transplantation. Clin Transl Immunology 2014; 3:e12. [PMID: 25505960 PMCID: PMC4232060 DOI: 10.1038/cti.2014.3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023] Open
Abstract
Infectious complications remain a leading cause of morbidity and mortality after solid organ transplantation (SOT), and largely depend on the net state of immunosuppression achieved with current regimens. Cytomegalovirus (CMV) is a major opportunistic viral pathogen in this setting. The application of strategies of immunological monitoring in SOT recipients would allow tailoring of immunosuppression and prophylaxis practices according to the individual's actual risk of infection. Immune monitoring may be pathogen-specific or nonspecific. Nonspecific immune monitoring may rely on either the quantification of peripheral blood biomarkers that reflect the status of a given arm of the immune response (serum immunoglobulins and complement factors, lymphocyte sub-populations, soluble form of CD30), or on the functional assessment of T-cell responsiveness (release of intracellular adenosine triphosphate following a mitogenic stimulus). In addition, various methods are currently available for monitoring pathogen-specific responses, such as CMV-specific T-cell-mediated immune response, based on interferon-γ release assays, intracellular cytokine staining or main histocompatibility complex-tetramer technology. This review summarizes the clinical evidence to date supporting the use of these approaches to the post-transplant immune status, as well as their potential limitations. Intervention studies based on validated strategies for immune monitoring still need to be performed.
Collapse
|
27
|
C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 2013; 122:3473-81. [PMID: 23878142 DOI: 10.1182/blood-2013-05-502229] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is a proinflammatory cytokine and a therapeutic target in several chronic autoimmune states. Monocytes and macrophages are the major sources of IL-1β. IL-1β production by these cells requires Toll-like receptor (TLR) and adenosine triphosphate (ATP)-mediated P2X purinoceptor 7 (P2X7) signals, which together activate the inflammasome. However, how TLR signals and ATP availability are regulated during monocyte activation is unclear and the involvement of another danger signal system has been proposed. Here, we demonstrate that both lipopolysaccharide (LPS) and the anaphylatoxin C3a are needed for IL-1β production in human macrophages and dendritic cells, while in monocytes, C3a enhanced the secretion of LPS-induced IL-1β. C3a and LPS-stimulated monocytes increased T helper 17 (Th17) cell induction in vitro, and human rejecting, but not nonrejecting, kidney transplant biopsies were characterized by local generation of C3a and monocyte and Th17 cell infiltration. Mechanistically, C3a drives IL-1β production in monocytes by controlling the release of intracellular ATP into the extracellular space via regulation of as-yet unidentified ATP-releasing channels in an extracellular signal-regulated kinase 1/2-dependent fashion. These data define a novel function for complement in inflammasome activation in monocytes and suggest that C3aR-mediated signaling is a vital component of the IL-1β-Th17 axis.
Collapse
|
28
|
Barnett ANR, Asgari E, Chowdhury P, Sacks SH, Dorling A, Mamode N. The use of eculizumab in renal transplantation. Clin Transplant 2013; 27:E216-29. [DOI: 10.1111/ctr.12102] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 01/02/2023]
Affiliation(s)
- A. Nicholas R. Barnett
- Renal and Transplant Department; Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust; London; UK
| | - Elham Asgari
- MRC Centre for Transplantation; King's College London; UK
| | - Paramit Chowdhury
- Renal and Transplant Department; Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust; London; UK
| | | | | | - Nizam Mamode
- Renal and Transplant Department; Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust; London; UK
| |
Collapse
|
29
|
Pre-transplant levels of ficolin-3 are associated with kidney graft survival. Clin Immunol 2013; 146:240-7. [DOI: 10.1016/j.clim.2013.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/29/2023]
|
30
|
Fernández-Ruiz M, López-Medrano F, Varela-Peña P, Morales JM, García-Reyne A, San Juan R, Lumbreras C, Lora-Pablos D, Polanco N, Andrés A, Paz-Artal E, Aguado JM. Hypocomplementemia in kidney transplant recipients: impact on the risk of infectious complications. Am J Transplant 2013; 13:685-94. [PMID: 23311502 DOI: 10.1111/ajt.12055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/31/2012] [Accepted: 11/12/2012] [Indexed: 01/25/2023]
Abstract
The usefulness of monitoring of complement levels in predicting the occurrence of infection in kidney transplant (KT) recipients remains largely unknown. We prospectively assessed serum complement levels (C3 and C4) at baseline and at months 1 and 6 in 270 patients undergoing KT. Adjusted hazard ratios (aHRs) for infection in each posttransplant period were estimated by Cox regression. The prevalence of C3 hypocomplementemia progressively decreased from 21.5% at baseline to 11.6% at month 6 (p = 0.017), whereas the prevalence of C4 hypocomplementemia rose from 3.7% at baseline to 9.2% at month 1 (p = 0.004). Patients with C3 hypocomplementemia at month 1 had higher incidences of overall (p = 0.002), bacterial (p = 0.004) and fungal infection (p = 0.019) in the intermediate period (months 1-6). On multivariate analysis C3 hypocomplementemia at month 1 emerged as a risk factor for overall (aHR 1.911; p = 0.009) and bacterial infection (aHR 2.130; p = 0.014) during the intermediate period, whereas C3 hypocomplementemia at month 6 predicted the occurrence of bacterial infection (aHR 3.347; p = 0.039) in the late period (>6 month). A simple monitoring strategy of serum C3 levels predicts the risk of posttransplant infectious complications in KT recipients.
Collapse
Affiliation(s)
- M Fernández-Ruiz
- Unit of Infectious Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), Hospital Universitario 12 de Octubre, School of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Low mannose-binding lectin serum levels are associated with reduced kidney graft survival. Kidney Int 2013; 83:264-71. [DOI: 10.1038/ki.2012.373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Abstract
Rejection is the major barrier to successful transplantation and usually results from the integration of multiple mechanisms. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval as well as ischemia-reperfusion, will initiate and amplify the adaptive response. For cell mediated rejection, T cells require multiple signals for activation, the minimum being two signals; antigen recognition and costimulation. The majority of B cells require help from T cells to initiate alloantibody production. Antibodies reactive to donor HLA molecules, minor histocompatibility antigens, endothelial cells, red blood cells, or autoantigens can trigger or contribute to rejection early as well as late after transplantation.
Collapse
Affiliation(s)
- Kathryn J Wood
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
33
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|
34
|
Yu M, Zou W, Peachey NS, McIntyre TM, Liu J. A novel role of complement in retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:7684-92. [PMID: 23074214 DOI: 10.1167/iovs.12-10069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The association of single nucleotide polymorphisms of components of the complement alternative pathway with the risk of age-related macular degeneration (AMD) indicates that complement signaling plays an important role in retinal physiology. How genetic variation leads to retinal degeneration is unknown. It has been assumed that complement activation augments immune responses, which in turn initiate AMD pathogenesis. To better understand the relationship between complement and the outer retina, we examined mice lacking the main complement component C3 and the receptors for complement activation fragments C3a (C3aR) and/or C5a (C5aR). METHODS Complement mutant mice were studied along with wild-type (WT) littermates from 6 weeks to 14 months of age. Strobe flash electroretinography (ERG) was used to examine outer retinal function and a dc-ERG technique was used to measure ERG components generated by the retinal pigment epithelium. Retinas were examined by histology, immunohistochemistry, and biochemistry. RESULTS Mice lacking C3aR and/or C5aR developed early onset and progressive retinal degeneration, accompanied by cleaved caspase-3 upregulation. Genetic deletion of C3aR and/or C5aR led to cell-specific defects that matched the cellular localization of these receptors in the WT retina. Compared to WT, C3aR(-/-) and C3aR(-/-)C5aR(-/-) mice showed increased retinal dysfunction upon light exposure. C3aR(-/-)C5aR(-/-) mice immunized with 4-hydroxynonenal-adducted protein developed severe retinal impairment unrelated to immune response. CONCLUSIONS C3aR- and C5aR-mediated signaling was necessary to maintain normal retinal function and structure. These receptors may be important biomarkers for predicting retinal degeneration including AMD.
Collapse
Affiliation(s)
- Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Despite the potent immunosuppressive activity that mesenchymal stem cells (MSCs) display in vitro, recent clinical trial results are disappointing, suggesting that MSC viability and/or function are greatly reduced after infusion. In this report, we demonstrated that human MSCs activated complement of the innate immunity after their contact with serum. Although all 3 known intrinsic cell-surface complement regulators were present on MSCs, activated complement overwhelmed the protection of these regulators and resulted in MSCs cytotoxicity and dysfunction. In addition, autologous MSCs suffered less cellular injury than allogeneic MSCs after contacting serum. All 3 complement activation pathways were involved in generating the membrane attack complex to directly injure MSCs. Supplementing an exogenous complement inhibitor, or up-regulating MSC expression levels of CD55, one of the cell-surface complement regulators, helped to reduce the serum-induced MSC cytotoxicity. Finally, adoptively transferred MSCs in complement deficient mice or complement-depleted mice showed reduced cellular injury in vivo compared with those in wild type mice. These results indicate that complement is integrally involved in recognizing and injuring MSCs after their infusion, suggesting that autologous MSCs may have ad-vantages over allogeneic MSCs, and that inhibiting complement activation could be a novel strategy to improve existing MSC-based therapies.
Collapse
|
36
|
Wu D, Qi G, Wang X, Xu M, Rong R, Wang X, Zhu T. Hematopoietic stem cell transplantation induces immunologic tolerance in renal transplant patients via modulation of inflammatory and repair processes. J Transl Med 2012; 10:182. [PMID: 22938596 PMCID: PMC3507650 DOI: 10.1186/1479-5876-10-182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/21/2012] [Indexed: 12/18/2022] Open
Abstract
Background Inducing donor-specific tolerance in renal transplant patients could potentially prevent allograft rejection and calcineurin inhibitor nephrotoxicity. Combined kidney and hematopoietic stem cell transplant from an HLA-matched donor is an exploratory and promising therapy to induce immune tolerance. Investigtion of molecular mechanisms involved in the disease is needed to understand the potential process of cell therapy and develop strategies to prevent this immunologic rejection. Methods We enrolled nine patients in a clinical study in which cryopreserved donor hematopoietic stem cells were infused on days 2, 4, and 6 after kidney transplantation. One month post-transplant, 4 plasma samples were collected from combined transplants (C + Tx), and 8 plasma samples from patients with kidney transplantation alone (Tx). High abundance proteins in plasma were depleted and the two-dimensional liquid chromatography-tandem mass spectrometry coupled with iTRAQ labeling was utilized to identify the protein profiling between the two groups. Clusters of up- and down-regulated protein profiles were submitted to MetaCore for the construction of transcriptional factors and regulation networks. Results and Discussion Among the 179 identified proteins, 65 proteins were found in C + Tx with at least a 2-fold change as compared with Tx. A subset of proteins related to the complement and coagulation cascade, including complement C3a,complement C5a, precrusors to fibrinogen alpha and beta chains,was significantly downregulated in C + Tx. Meanwhile, Apolipoprotein-A1(ApoA1), ApoC1, ApoA2, ApoE, and ApoB were significantly lower in Tx compared to C + Tx. Gene ontology analysis showed that the dominant processes of differentially expressed proteins were associated with the inflammatory response and positive regulation of plasma lipoprotein particle remodeling. Conclusions Thus, our study provides new insight into the molecular events in the hematopoietic stem cell-induced immunologic tolerance.
Collapse
Affiliation(s)
- Duojiao Wu
- Qingpu Branch, Fudan University Zhongshan Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Błogowski W, Dołęgowska B, Sałata D, Budkowska M, Domański L, Starzyńska T. Clinical analysis of perioperative complement activity during ischemia/reperfusion injury following renal transplantation. Clin J Am Soc Nephrol 2012; 7:1843-51. [PMID: 22904122 DOI: 10.2215/cjn.02200312] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The complement cascade seems to be an important mediator modulating renal ischemia/reperfusion injury. This study analyzed whether significant changes occur in the levels of a terminal panel of complement molecules (C3a, C5a, and C5b-9/membrane attack complex) during the early phase of human kidney allograft reperfusion and evaluated the potential association of these changes with clinical post-transplant graft function in kidney transplant recipients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Seventy-five renal transplant recipients undergoing transplantation between 2004 and 2006 were enrolled in the study and divided into early, slow, and delayed graft function groups. Blood samples were collected perioperatively during consecutive minutes of allograft reperfusion from the renal vein. Levels of complement molecules were measured using ELISA. RESULTS Analysis revealed no significant changes in C3a and C5a levels throughout reperfusion. The main complement molecule that was significantly associated with post-transplant graft function was C5b-9/membrane attack complex; throughout the reperfusion period, perioperative levels of C5b-9/membrane attack complex were around two to three times higher in delayed graft function patients than early and slow graft function individuals (P<0.005). In addition, C5b-9/membrane attack complex levels had a relatively high clinical sensitivity and specificity (70%-87.5%) for the prediction of early and long-term (1 year) post-transplant allograft function. CONCLUSIONS This clinical study supports a role for the complement cascade in delayed graft function development. However, additional studies are needed to elucidate the exact mechanisms responsible for this phenomenon. In addition, perioperative measurements of C5b-9/membrane attack complex are highlighted as promising potential clinical markers of post-transplant renal allograft function.
Collapse
Affiliation(s)
- Wojciech Błogowski
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
38
|
Lambris JD, Holers VM, Ricklin D. Complement in Action: An Analysis of Patent Trends from 1976 Through 2011. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 735:301-313. [PMID: 22990712 PMCID: PMC3535477 DOI: 10.1007/978-1-4614-4118-2_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complement is an essential part of the innate immune response. It interacts with diverse endogenous pathways and contributes to the maintenance of homeostasis, the modulation of adaptive immune responses, and the development of various pathologies. The potential usefulness, in both research and clinical settings, of compounds that detect or modulate complement activity has resulted in thousands of publications on complement-related innovations in fields such as drug discovery, disease diagnosis and treatment, and immunoassays, among others. This study highlights the distribution and publication trends of patents related to the complement system that were granted by the United States Patent and Trademark Office from 1976 to the present day. A comparison to complement-related documents published by the World Intellectual Property Organization is also included. Statistical analyses revealed increasing diversity in complement-related research interests over time. More than half of the patents were found to focus on the discovery of inhibitors; interest in various inhibitor classes exhibited a remarkable transformation from chemical compounds early on to proteins and antibodies in more recent years. Among clinical applications, complement proteins and their modulators have been extensively patented for the diagnosis and treatment of eye diseases (especially age-related macular degeneration), graft rejection, cancer, sepsis, and a variety of other inflammatory and immune diseases. All of the patents discussed in this chapter, as well as those from other databases, are available from our newly constructed complement patent database: www.innateimmunity.us/patent .
Collapse
Affiliation(s)
- John D. Lambris
- Medicine, University Of Pennsylvania Department Of Pathology Laboratory Of, Philadelphia, Pennsylvania USA
| | | | - Daniel Ricklin
- Department of Pathology & Laboratory Med, University of Pennsylvania School of Med, Philadelphia, Pennsylvania USA
| |
Collapse
|
39
|
Hattori Y, Bucy RP, Kubota Y, Baldwin WM, Fairchild RL. Antibody-mediated rejection of single class I MHC-disparate cardiac allografts. Am J Transplant 2012; 12:2017-28. [PMID: 22578247 PMCID: PMC3409335 DOI: 10.1111/j.1600-6143.2012.04073.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Murine CCR5(-/-) recipients produce high titers of antibody to complete MHC-mismatched heart and renal allografts. To study mechanisms of class I MHC antibody-mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild-type C57BL/6 (H-2(b)) and B6.CCR5(-/-) recipients. Donor-specific antibody titers in CCR5(-/-) recipients were 30-fold higher than in wild-type recipients. B6.K(d) allografts survived longer than 60 days in wild-type recipients whereas CCR5(-/-) recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils and macrophages, and C4d deposition in the graft capillaries. B6.K(d) allografts were rejected by CD8(-/-)/CCR5(-/-), but not μMT(-/-)/CCR5(-/-), recipients indicating the need for antibody but not CD8 T cells. Grafts recovered at day 10 from CCR5(-/-) and CD8(-/-)/CCR5(-/-) recipients and from RAG-1(-/-) allograft recipients injected with anti-K(d) antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of antidonor class I MHC antibody can mediate allograft rejection, that donor-reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity.
Collapse
Affiliation(s)
- Yusuke Hattori
- Glickman Urological and Kidney Institute Cleveland Clinic, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
- Department of Urology, Yokohama City University, Kanagawa, Japan
| | - R. Pat Bucy
- Department of Pathology, University of Alabama-Birmingham, Birmingham, AL
| | - Yoshinobu Kubota
- Department of Urology, Yokohama City University, Kanagawa, Japan
| | - William M. Baldwin
- Glickman Urological and Kidney Institute Cleveland Clinic, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
| | - Robert L. Fairchild
- Glickman Urological and Kidney Institute Cleveland Clinic, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
40
|
Abstract
Rejection is the major barrier to successful transplantation. The immune response to an allograft is an ongoing dialogue between the innate and adaptive immune system that if left unchecked will lead to the rejection of transplanted cells, tissues, or organs. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval and ischemia reperfusion, will initiate and amplify the adaptive response. T cells require a minimum of two signals for activation, antigen recognition, and costimulation. The activation requirements of naive T cells are more stringent than those of memory T cells. Memory T cells are present in the majority of transplant recipients as a result of heterologous immunity. The majority of B cells require help from T cells to initiate antibody production. Antibodies reactive to donor human leukocyte antigen molecules, minor histocompatibility antigens, endothelial cells, RBCs, or autoantigens can trigger or contribute to rejection early and late after transplantation. Antibody-mediated rejection triggered by alloantibody binding and complement activation is recognized increasingly as a significant contribution to graft loss. Even though one component of the immune system may dominate and lead to rejection being described in short hand as T cell or antibody mediated, it is usually multifactorial resulting from the integration of multiple mechanisms. Identifying the molecular pathways that trigger tissue injury, signal transduction and rejection facilitates the identification of targets for the development of immunosuppressive drugs.
Collapse
|
41
|
Doyle TJ, Kaur G, Putrevu SM, Dyson EL, Dyson M, McCunniff WT, Pasham MR, Kim KH, Dufour JM. Immunoprotective properties of primary Sertoli cells in mice: potential functional pathways that confer immune privilege. Biol Reprod 2012; 86:1-14. [PMID: 21900683 DOI: 10.1095/biolreprod.110.089425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary Sertoli cells isolated from mouse testes survive when transplanted across immunological barriers and protect cotransplanted allogeneic and xenogeneic cells from rejection in rodent models. In contrast, the mouse Sertoli cell line (MSC-1) lacks immunoprotective properties associated with primary Sertoli cells. In this study, enriched primary Sertoli cells or MSC-1 cells were transplanted as allografts into the renal subcapsular area of naive BALB/c mice, and their survival in graft sites was compared. While Sertoli cells were detected within the grafts with 100% graft survival throughout the 20-day study, MSC-1 cells were rejected between 11 and 14 days, with 0% graft survival at 20 days posttransplantation. Nonetheless, the mechanism for primary Sertoli cell survival and immunoprotection remains unresolved. To identify immune factors or functional pathways potentially responsible for immune privilege, gene expression profiles of enriched primary Sertoli cells were compared with those of MSC-1 cells. Microarray analysis identified 2369 genes in enriched primary Sertoli cells that were differentially expressed at ±4-fold or higher levels than in MSC-1 cells. Ontological analyses identified multiple immune pathways, which were used to generate a list of 340 immune-related genes. Three functions were identified in primary Sertoli cells as potentially important for establishing immune privilege: suppression of inflammation by specific cytokines and prostanoid molecules, slowing of leukocyte migration by controlled cell junctions and actin polymerization, and inhibition of complement activation and membrane-associated cell lysis. These results increase our understanding of testicular immune privilege and, in the long-term, could lead to improvements in transplantation success.
Collapse
Affiliation(s)
- Timothy J Doyle
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Azimzadeh AM, Lees JR, Ding Y, Bromberg JS. Immunobiology of transplantation: impact on targets for large and small molecules. Clin Pharmacol Ther 2011; 90:229-42. [PMID: 21716276 DOI: 10.1038/clpt.2011.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organ transplantation is the preferred method of treatment for many forms of end-stage organ failure. However, immunosuppressive drugs that are used to avoid rejection can result in numerous undesirable effects (infection, malignancy, hypertension, diabetes, and accelerated arteriosclerosis). Moreover, they are not effective at preventing chronic rejection resulting in late graft loss. This review summarizes the fundamental concepts underlying the rejection of solid-organ allografts with the aim of highlighting potential new targets for therapeutics. Future improvement will depend on new therapeutic moieties, including biologics, to target various pathways of both the innate and adaptive arms of immunity. Results from some of the most recent clinical trials in transplantation and emerging new therapies are also discussed.
Collapse
Affiliation(s)
- A M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Raedler H, Vieyra MB, Leisman S, Lakhani P, Kwan W, Yang M, Johnson K, Faas SJ, Tamburini P, Heeger PS. Anti-complement component C5 mAb synergizes with CTLA4Ig to inhibit alloreactive T cells and prolong cardiac allograft survival in mice. Am J Transplant 2011; 11:1397-406. [PMID: 21668627 PMCID: PMC3128644 DOI: 10.1111/j.1600-6143.2011.03561.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While activation of serum complement mediates antibody-initiated vascular allograft injury, increasing evidence indicates that complement also functions as a modulator of alloreactive T cells. We tested whether blockade of complement activation at the C5 convertase step affects T cell-mediated cardiac allograft rejection in mice. The anti-C5 mAb BB5.1, which prevents the formation of C5a and C5b, synergized with subtherapeutic doses of CTLA4Ig to significantly prolong the survival of C57BL/6 heart grafts that were transplanted into naive BALB/c recipients. Anti-C5 mAb treatment limited the induction of donor-specific IFNγ-producing T cell alloimmunity without inducing Th2 or Th17 immunity in vivo and inhibited primed T cells from responding to donor antigens in secondary mixed lymphocyte responses. Additional administration of anti-C5 mAb to the donor prior to graft recovery further prolonged graft survival and concomitantly reduced both the in vivo trafficking of primed T cells into the transplanted allograft and decreased expression of T cell chemoattractant chemokines within the graft. Together these results support the novel concept that C5 blockade can inhibit T cell-mediated allograft rejection through multiple mechanisms, and suggest that C5 blockade may constitute a viable strategy to prevent and/or treat T cell-mediated allograft rejection in humans.
Collapse
Affiliation(s)
- H Raedler
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant 2011; 16:180-7. [PMID: 21415820 DOI: 10.1097/mot.0b013e3283446b1d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In the current graft shortage, it is paramount to improve the quality of transplanted organs. Organ preservation represents an underused therapeutic window with great potential to reduce ischaemia-reperfusion injury (IRI) and improve graft quality. Herein, we review strategies using this window as well as other promising work targeting IRI pathways using pharmacological treatments and gene therapy. RECENT FINDINGS We highlight studies using molecules administered during kidney preservation to target key components of IRI such as inflammation, oxidative stress, mitochondrial activity and the coagulation pathway. We further expose recent studies of gene therapy directed against inflammation or apoptosis during cold storage. Other pathways with potential therapeutic molecules are cited. SUMMARY The use of cold preservation as a therapeutic window to deliver pharmacological or gene therapy treatments can significantly improve both short-term and long-term graft outcomes. Even if human gene therapy remains hampered by the quantity of agent needed and the potential harmfulness of the vector, it clearly offers a wide array of possibilities for the future. Although gene therapy is still too immature, we expose pharmacological strategies which can readily be applied to the clinic and improve both transplantation success rates and the patients' quality of life.
Collapse
|