1
|
Lee S, Blanco T, Musayeva A, Dehghani S, Narimatsu A, Forouzanfar K, Ortiz G, Kahale F, Wang S, Chen Y, Dohlman TH, Chauhan SK, Dana R. Myeloid-derived suppressor cells promote allograft survival by suppressing regulatory T cell dysfunction in high-risk corneal transplantation. Am J Transplant 2024; 24:1597-1609. [PMID: 38514014 PMCID: PMC11390336 DOI: 10.1016/j.ajt.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Highly inflamed and neovascularized corneal graft beds are known as high-risk (HR) environments for transplant survival. One of the primary factors leading to this rejection is reduction in the suppressive function of regulatory T cells (Treg). Our results show that myeloid-derived suppressor cells (MDSC) counteract interleukin-6-mediated Treg dysfunction by expressing interleukin-10. Additionally, MDSC maintain forkhead box P3 stability and their ability to suppress IFN-γ+ Th1 cells. Administering MDSC to HR corneal transplant recipients demonstrates prolonged graft survival via promotion of Treg while concurrently suppressing IFN-γ+ Th1 cells. Moreover, MDSC-mediated donor-specific immune tolerance leads to long-term corneal graft survival as evidenced by the higher survival rate or delayed survival of a second-party C57BL/7 (B6) graft compared to those of third-party C3H grafts observed in contralateral low-risk or HR corneal transplantation of BALB/c recipient mice, respectively. Our study provides compelling preliminary evidence demonstrating the effectiveness of MDSC in preventing Treg dysfunction, significantly improving graft survival in HR corneal transplantation, and showing promising potential for immune tolerance induction.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shima Dehghani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akitomo Narimatsu
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katayoon Forouzanfar
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Singh K, Stempora L, Harvey RD, Kirk AD, Larsen CP, Blazar BR, Kean LS. Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. Am J Transplant 2014; 14:2691-703. [PMID: 25359003 PMCID: PMC4236286 DOI: 10.1111/ajt.12934] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/22/2014] [Accepted: 06/05/2014] [Indexed: 01/25/2023]
Abstract
Many critical issues remain concerning how best to deploy adoptive regulatory T cell (Treg) immunotherapy to the clinic. These include a determination of their pharmacokinetic characteristics, their optimal dose, their phenotypic stability and the best therapies with which to pair Tregs. By performing a CFSE-labeled autologous Treg pulse experiment, we determined that the accessible peripheral blood Treg pool in rhesus macaques is quite large (75 ± 11 × 10(6) Tregs/kg). Pharmacokinetic analysis revealed that Tregs have two phases of elimination: an α phase, with a T1/2 in the peripheral blood of 32.4 ± 11.3 h and a β phase with a T1/2 of 120.4 ± 19.7 h. In addition to their short initial half-life, Tregs underwent rapid phenotypic shifts after infusion, with significant loss of both CD25 and FoxP3 by day +6. While tacrolimus stabilized CD25 expression, it did not improve T1/2 , nor mitigate the loss of FoxP3. In contrast, rapamycin significantly stabilized both CD25 and FoxP3, and supported an increased half-life, with an α phase of 67.7 ± 6.9 h and a β phase of 252.1 ± 54.9 h. These results suggest that rapamycin may be a necessary addition to Treg immunotherapy, and that tacrolimus may be deleterious to Treg integrity posttransfer.
Collapse
Affiliation(s)
- K Singh
- Department of Surgery, The Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | | | |
Collapse
|
3
|
Pőcze B, Németh P, Langer R. [Recent options in drug therapy after solid organ transplantation]. Orv Hetil 2012; 153:1294-301. [PMID: 22890176 DOI: 10.1556/oh.2012.29343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Solid organ transplantation has shown improvement in patient and graft survival rates due to the development of immunosuppression in the last fifty years; however only the last two decades led to the development of new, baseline immunosuppressive drugs that avoid the unlikely side effects of calcineurin inhibitors, especially nephrotoxicity. The transplanted organ is foreign to the host and, therefore, it induces a complex immune response of the recipient. In this review, a brief outline of immune response is given, followed by the introduction of new immunosuppressive drugs acting via variant pathways. These are compounds which are already in use or becoming shortly available and are potential future alternatives for the calcineurin inhibitors. This paper highlights the role of co-stimulation blockade with belatacept and the recently even more intensively studied field of tolerance induction.
Collapse
Affiliation(s)
- Balázs Pőcze
- Semmelweis Egyetem, Általános Orvostudományi Kar Transzplantációs és Sebészeti Klinika Budapest.
| | | | | |
Collapse
|
4
|
Lees JR, Azimzadeh AM, Bromberg JS. Myeloid derived suppressor cells in transplantation. Curr Opin Immunol 2011; 23:692-7. [PMID: 21802931 DOI: 10.1016/j.coi.2011.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 12/19/2022]
Abstract
Myeloid derived suppressor cells (MDSC) are a heterogeneous population of hematopoietic derived cell precursors that can suppress immune responses in a variety of inflammatory settings. Here we review recent studies detailing expansion of phenotypically and functionally disparate MDSC. Findings related to MDSC accumulation, activation, and mechanisms utilized in immune suppression are presented. Further, we discuss recent reports that suggest MDSC are expanded during transplantation and that modulation of MDSC can participate in preventing graft rejection.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|