1
|
Kim J, Kang SJ, Jo N, Kim SJ, Jang S. Cancer prognosis using base excision repair genes. Mol Cells 2025; 48:100186. [PMID: 39828060 PMCID: PMC11835649 DOI: 10.1016/j.mocell.2025.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The base excision repair (BER) pathway is a critical mechanism in genomic stability. This review investigates the role of the BER pathway in advanced cancer therapies considering the pivotal role of genetic factors in cancer patient responses and prognosis. BER factors significantly influence genetic instability and cancer prognosis, as well as the effectiveness of chemotherapy and radiation therapy. In various cancers such as breast, colon, lung, and bladder, BER factors have shown potential as critical biological markers for predicting cancer outcomes. This study focuses on the polymorphisms and expression levels of key BER genes, including OGG1, XRCC1, APE1, and Polβ. Our findings demonstrate that the expression levels of BER genes and proteins are closely associated with the risk, progression, treatment response, and prognosis of various cancers. These insights could improve cancer treatments and aid in the development of drugs targeting BER proteins. Ongoing research in this field requires extensive statistical analyses and large-scale prospective studies to effectively utilize BER protein levels. Ultimately, these results suggest that the BER pathway represents a potential target for cancer diagnosis, prognostic prediction, and the development of personalized therapeutic strategies. This paves the way for effective cancer treatment in the future.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Nayoon Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sunbok Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Yu EYW, Tang QY, Chen YT, Zhang YX, Dai YN, Wu YX, Li WC, Mehrkanoon S, Wang SZ, Zeegers MP, Wesselius A. Genome-wide exploration of genetic interactions for bladder cancer risk. Int J Cancer 2024; 154:81-93. [PMID: 37638657 DOI: 10.1002/ijc.34690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although GWASs have been conducted to investigate genetic variation of bladder tumorigenesis, little is known about genetic interactions that may influence bladder cancer (BC) risk. By leveraging large-scale participants from UK Biobank, we established a discovery database with 4000 Caucasian participants (2000 cases vs 2000 non-cases), a database with 1648 Caucasian participants (824 cases vs 824 non-cases) and 856 non-Caucasian participants (428 cases vs 428 non-cases) as validation. We then performed a genome-wide SNP-SNP interaction investigation related to BC risk based a machine learning approach (ie, GenEpi). Moreover, we used the selected interactions to build a BC screening model with an integrated interaction-empowered polygenic risk score (iPRS) based on Cox proportional hazard model. With Bonferroni correction, we identified 10 statistically significant pairs of SNPs, which located in 17 chromosomes. Of these, four SNP-SNP interactions were found to be positively associated with BC risk among Caucasian participants (ORs 1.57-2.03), while six SNP-SNP interactions showed negatively associated with BC risk (ORs 0.54-0.65). Only four of the SNP-SNP interactions were consistently identified in non-Caucasian participants located in ST7L-ADSS2, FHIT-CHDH, LARP4B-LHPP and RBFOX3-MPRIP. In addition, the iPRS showed a HR of 1.81 (95% CI: 1.46-2.09) compared the highest tertile to the lowest tertile, with an enhanced AUC (0.91; 95% CI:0.85-0.97) than PRS (AUC: 0.86; 95% CI:0.76-0.95; P-DeLong test = 2.2 × 10-4 ). In summary, this study identified several important SNP-SNP interactions for BC risk, and developed an iPRS model for BC screening, which may help to identify the people at high-risk state of BC before early manifestation.
Collapse
Affiliation(s)
- Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Qiu-Yi Tang
- Medical School of Southeast University, Nanjing, China
| | - Ya-Ting Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan-Xi Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Ya-Nan Dai
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Yu-Xuan Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Wen-Chao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Siamak Mehrkanoon
- Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
| | - Shi-Zhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Yu EYW, Liu YX, Chen YT, Tang QY, Mehrkanoon S, Wang SZ, Li WC, Zeegers MP, Wesselius A. The effects of the interaction of genetic predisposition with lifestyle factors on bladder cancer risk. BJU Int 2023; 131:443-451. [PMID: 36053730 DOI: 10.1111/bju.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the association of polygenic risk score (PRS) and bladder cancer (BC) risk and whether this PRS can be offset by a healthy lifestyle. METHODS Individuals with BC (n = 563) and non-BC controls (n = 483 957) were identified in the UK Biobank, and adjusted Cox regression models were used. A PRS was constructed based on 34 genetic variants associated with BC development, while a healthy lifestyle score (HLS) was constructed based on three lifestyle factors (i.e., smoking, physical activity, and diet). RESULTS Overall, a negative interaction was observed between the PRS and the HLS (P = 0.02). A 7% higher and 28% lower BC risk per 1-standard deviation (SD) increment in PRS and HLS were observed, respectively. A simultaneous increment of 1 SD in both HLS and PRS was associated with a 6% lower BC risk. In addition, individuals with a high genetic risk and an unfavourable lifestyle showed an increased BC risk compared to individuals with low genetic risk and a favourable lifestyle (hazard ratio 1.55, 95% confidence interval 1.16-1.91; P for trend <0.001). Furthermore, population-attributable fraction (PAF) analysis showed that 12%-15% of the BC cases might have been prevented if individuals had adhered to a healthy lifestyle. CONCLUSION This large-scale cohort study shows that a genetic predisposition combined with unhealthy behaviours have a joint negative effect on the risk of developing BC. Behavioural lifestyle changes should be encouraged for people through comprehensive, multifactorial approaches, although high-risk individuals may be selected based on genetic risk.
Collapse
Affiliation(s)
- Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Yu-Xiang Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Ya-Ting Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiu-Yi Tang
- Medical School of Southeast University, Nanjing, China
| | - Siamak Mehrkanoon
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Shi-Zhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wen-Chao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Singh A, Singh N, Behera D, Sharma S. XRCC1 632 as a candidate for cancer predisposition via a complex interaction with genetic variants of base excision repair and double strand break repair genes. Future Oncol 2019; 15:3845-3859. [PMID: 31709821 DOI: 10.2217/fon-2019-0297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The DNA repair system safeguards integrity of DNA. Genetic alterations force the improper repair which in conjugation with other factors ultimately results in carcinogenesis. Materials & methods: PCR-restriction fragment length polymorphism was used for genotyping, which was followed by statistical analysis using logistic regression analysis, multifactor dimensionality reduction and classification and regression analysis tree, elaborating the association with lung cancer subjects. Results: Combination of XRCC1 632 and OGG1326 showcased a high risk of eightfold (odds ratio: 7.92; 95% CI: 2.68–23.4; p = 0.0002; false discovery rate (FDR) p = 0.002). Similarly, XRCC1 632 and MUTYH 324 (odds ratio: 5.07; 95% CI: 2.6–9.67; p < 0.0001; FDRp = 0.002) had a high risk. Multifactor dimensionality reduction analysis revealed five factor model as the best model with prediction error of 0.37 (p = 0.02). Conclusion: There was a clear indication that high order interactions were major role players in the study.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Biotechnology, Thapar University, Patiala, Punjab 147002, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar University, Patiala, Punjab 147002, India
| |
Collapse
|
5
|
Xie H, Tao W, Wu X, Gu J. Genetic variations in apoptosis pathway and the risk of ovarian cancer. Oncotarget 2016; 7:56737-56745. [PMID: 27462919 PMCID: PMC5302949 DOI: 10.18632/oncotarget.10772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Apoptosis is a highly conserved form of cell death and aberrant regulation of apoptotic cell death mechanisms leads to variety of major human diseases, especially tumor formation. Genetic variations in apoptosis genes may increase susceptibility to ovarian cancer. RESULTS In individual SNP analysis, 12 SNPs in 5 apoptosis pathway genes were significantly associated with ovarian cancer risk after adjustment for multiple comparisons at q-value <0.05. The most significant SNP was rs11152377 in the Bcl-2 gene. The homozygous variant TT genotype was associated with a significantly decreased risk of ovarian cancer (odds ratio [OR] =0.53; 95% confidence interval [CI], 0.37-0.77, P<0.001). Cumulative effect analysis showed joint effects of increased risk of ovarian cancer with increasing number of unfavorable genotypes in patients. Classification and regression tree (CART) analysis further revealed high-order gene-gene interactions and categorized the study subjects into low-, medium-, and high-risk groups. Compared with the low-risk group, medium-risk group and high-risk group conferred 1.76-fold (95% CI: 1.06-2.90) and 3.64-fold (95% CI: 2.37-5.59) increased risk of ovarian cancer (P for trend <0.001)Materials and Methods: In a case-control study of 417 ovarian cancer patients and 417 matched controls, we evaluated the associations of 587 single nucleotide polymorphisms (SNPs) from 65 genes of the apoptosis pathway with the risk of ovarian cancer. CONCLUSIONS Our results suggest that genetic variations in apoptosis pathway genes modulate the risk of ovarian cancer individually and jointly.
Collapse
Affiliation(s)
- Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wade Tao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Chen M, Rothman N, Ye Y, Gu J, Scheet PA, Huang M, Chang DW, Dinney CP, Silverman DT, Figueroa JD, Chanock SJ, Wu X. Pathway analysis of bladder cancer genome-wide association study identifies novel pathways involved in bladder cancer development. Genes Cancer 2016; 7:229-239. [PMID: 27738493 PMCID: PMC5059113 DOI: 10.18632/genesandcancer.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Genome-wide association studies (GWAS) are designed to identify individual regions associated with cancer risk, but only explain a small fraction of the inherited variability. Alternative approach analyzing genetic variants within biological pathways has been proposed to discover networks of susceptibility genes with additional effects. The gene set enrichment analysis (GSEA) may complement and expand traditional GWAS analysis to identify novel genes and pathways associated with bladder cancer risk. We selected three GSEA methods: Gen-Gen, Aligator, and the SNP Ratio Test to evaluate cellular signaling pathways involved in bladder cancer susceptibility in a Texas GWAS population. The candidate genetic polymorphisms from the significant pathway selected by GSEA were validated in an independent NCI GWAS. We identified 18 novel pathways (P < 0.05) significantly associated with bladder cancer risk. Five of the most promising pathways (P ≤ 0.001 in any of the three GSEA methods) among the 18 pathways included two cell cycle pathways and neural cell adhesion molecule (NCAM), platelet-derived growth factor (PDGF), and unfolded protein response pathways. We validated the candidate polymorphisms in the NCI GWAS and found variants of RAPGEF1, SKP1, HERPUD1, CACNB2, CACNA1C, CACNA1S, COL4A2, SRC, and CACNA1C were associated with bladder cancer risk. Two CCNE1 variants, rs8102137 and rs997669, from cell cycle pathways showed the strongest associations; the CCNE1 signal at 19q12 has already been reported in previous GWAS. These findings offer additional etiologic insights highlighting the specific genes and pathways associated with bladder cancer development. GSEA may be a complementary tool to GWAS to identify additional loci of cancer susceptibility.
Collapse
Affiliation(s)
- Meng Chen
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - David W Chang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Zhao T, Wu X, Liu J. Association between interleukin-22 genetic polymorphisms and bladder cancer risk. Clinics (Sao Paulo) 2015; 70:686-90. [PMID: 26598081 PMCID: PMC4602377 DOI: 10.6061/clinics/2015(10)05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/08/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The cytokine interleukin-22 (IL-22), which is produced by T cells and natural killer cells, is associated with tumorigenesis and tumor progression in cancers. However, the role of IL-22 in bladder cancer has not been investigated. MATERIALS AND METHODS A prospective hospital-based case-control study comprising 210 patients with pathologically proven bladder cancer and 210 age- and gender-matched healthy controls was conducted. The genotypes of 3 common polymorphisms (-429 C/T, +1046 T/A and +1995 A/C) of the IL-22 gene were determined with fluorogenic 5' exonuclease assays. RESULTS Patients with bladder cancer had a significantly higher frequency of the IL-22 -429 TT genotype [odds ratio (OR)=2.04, 95% confidence interval (CI)=1.19, 3.49; p=0.009] and -429 T allele (OR=1.42, 95% CI=1.08, 1.87; p=0.01) than the healthy controls. These findings were still significant after a Bonferroni correction. When stratifying according to the stage of bladder cancer, we found that patients with superficial bladder cancer had a significantly lower frequency of the IL-22 -429 TT genotype (OR=0.48, 95% CI=0.23, 0.98; p=0.04). When stratifying according to the grade and histological type of bladder cancer, we found no statistical association. The IL-22 +1046 T/A and IL-22 +1995 A/C gene polymorphisms were not associated with the risk of bladder cancer. CONCLUSION To the authors' knowledge, this is the first report documenting that the IL-22 -429 C/T gene polymorphism is associated with bladder cancer risk. Additional studies are required to confirm this finding.
Collapse
Affiliation(s)
- Tao Zhao
- Chongqing Medical University, YongChuan Hospital, Department of Urology, YongChuan, Chongqing, China
| | - XiaoHou Wu
- The First Affiliated Hospital of Chongqing, Medical University, Department of Urology, Chongqing, China
| | - JiaJi Liu
- Chongqing Medical University, YongChuan Hospital, Department of Urology, YongChuan, Chongqing, China
| |
Collapse
|
8
|
Xie H, Gong Y, Dai J, Wu X, Gu J. Genetic variations in base excision repair pathway and risk of bladder cancer: a case-control study in the United States. Mol Carcinog 2015; 54:50-7. [PMID: 24038406 DOI: 10.1002/mc.22073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 02/03/2023]
Abstract
Base excision repair (BER) is one of the major cellular DNA repair pathways that repairs small isolated foci of DNA damage including reduced or oxidized single bases or fragments and small, non-bulky adducts. Genetic variations in BER genes may affect DNA repair capacity and increase susceptibility to bladder cancer. In a case-control study of 801 bladder cancer patients and 801 matched controls, we evaluated the associations of 167 single nucleotide polymorphisms (SNPs) from 19 genes of the BER pathway with the risk of bladder cancer. In individual SNP analysis, 13 SNPs in 10 BER pathway genes were significantly associated with bladder cancer risk. The most significant SNP was rs2029167 in the SMUG1 gene. The homozygous variant GG genotype was associated with a 1.42-fold increased risk of bladder cancer (95% confidence interval [CI], 1.11-1.82, P=0.005). Cumulative effect analysis showed joint effects of increased risk of bladder cancer with increasing number of unfavorable genotypes in patients. Classification and regression tree analysis further revealed high-order gene-gene interactions and categorized the study subjects into low-, medium-low-, medium-high-, and high-risk groups. Compared with the low-risk group, the odds ratio for medium-low-, medium-high-, and high-risk group was 1.83 (95% CI: 1.23-2.72), 2.61 (95% CI: 1.79-3.80), and 3.05 (95% CI: 2.08-4.46), respectively (P for trend<0.001). Our results suggest that genetic variations in BER pathway genes modulate the risk of bladder cancer individually and jointly.
Collapse
Affiliation(s)
- Hui Xie
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas; State Key Laboratory of Reproductive Medicine, Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
9
|
Chu H, Wang M, Zhang Z. Bladder cancer epidemiology and genetic susceptibility. J Biomed Res 2013; 27:170-8. [PMID: 23720672 PMCID: PMC3664723 DOI: 10.7555/jbr.27.20130026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 01/27/2023] Open
Abstract
Bladder cancer is the most common malignancy of the urinary system. The incidence of bladder cancer of men is higher than that of women (approximately 4:1). Here, we summarize the bladder cancer-related risk factors, including environmental and genetic factors. In recent years, although the mortality rate induced by bladder cancer has been stable or decreased gradually, the public health effect may be pronounced. The well-established risk factors for bladder cancer are cigarette smoking and occupational exposure. Genetic factors also play important roles in the susceptibility to bladder cancer. A recent study demonstrated that hereditary non-polyposis colorectal cancer is associated with increased risk of bladder cancer. Since 2008, genome-wide association study (GWAS) has been used to identify the susceptibility loci for bladder cancer. Further gene-gene or gene-environment interaction studies need to be conducted to provide more information for the etiology of bladder cancer.
Collapse
Affiliation(s)
- Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China; ; Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | | | | |
Collapse
|
10
|
Zhu X, Zhang J, Fan W, Wang F, Yao H, Wang Z, Hou S, Tian Y, Fu W, Xie D, Zhu W, Long J, Wu L, Zheng X, Kung H, Zhou K, Lin MCM, Luo H, Li D. The rs391957 variant cis-regulating oncogene GRP78 expression contributes to the risk of hepatocellular carcinoma. Carcinogenesis 2013; 34:1273-80. [PMID: 23416888 DOI: 10.1093/carcin/bgt061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is one of the most important responders to disease-related stress. We assessed the association of the promoter polymorphisms of GRP78 with risk of hepatocellular carcinoma (HCC) and GRP78 expression in a Chinese population. We examined 1007 patients undergoing diagnostic HCC and 810 unrelated healthy controls. Mechanisms by which the GRP78 promoter polymorphism modulates HCC risk and GRP78 levels were analyzed. The promoter haplotype and diplotype carrying rs391957 (-415bp) allele G and genotype GG was strongly associated with HCC risk. Luciferase reporter assays indicated that the promoter carrying rs391957 allele G (haplotype GCCd) showed increased activity in HepG2 cells and Hela cells. rs391957 was also shown to increase the affinity of the transcriptional activator Ets-2, the resistance to apoptosis, as well as cell instability in stressful microenvironment. Furthermore, compared with allele A, rs391957 allele G was associated with higher levels of GRP78 mRNA and protein in HCC tissues. These findings provided new insights into the pathogenesis of HCC and an unexpected effect of the interaction between rs391957 and Ets-2 on hepatocarcinogenesis, and especially supported the hypothesis that stress-related and evolutionarily conserved genetic variant(s) influencing transcriptional regulation could predict susceptibilities.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Dongguan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiriluk KJ, Prasad SM, Patel AR, Steinberg GD, Smith ND. Bladder cancer risk from occupational and environmental exposures. Urol Oncol 2012; 30:199-211. [DOI: 10.1016/j.urolonc.2011.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/20/2022]
|
12
|
Abstract
Bladder cancer is an excellent model for studying genetic susceptibility and gene-environment interaction in cancer etiology. The candidate gene approach found NAT2 slow acetylator and GSTM1-null genotypes to be bladder cancer susceptibility loci and also demonstrated interactions between these two genotypes and smoking in modulating bladder cancer risk. Recent genome-wide association studies identified at least eight novel genetic susceptibility loci for bladder cancer. Genetic determinants of clinical outcomes have been inconclusive. The future directions are to identify more genetic susceptibility loci for bladder cancer risk and outcome through a genome-wide association study approach, identify the causal genes and variants, study the biological mechanisms underlying the association between the causal variants and bladder cancer risk, detect gene-environment interactions and incorporate genetic knowledge into clinically applicable risk prediction models to benefit patients and public health.
Collapse
Affiliation(s)
- Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030, USA
| | | |
Collapse
|
13
|
|
14
|
Grotenhuis AJ, Vermeulen SH, Kiemeney LA. Germline genetic markers for urinary bladder cancer risk, prognosis and treatment response. Future Oncol 2011; 6:1433-60. [PMID: 20919828 DOI: 10.2217/fon.10.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
After decades of research using a candidate gene approach, only NAT2 and GSTM1 have consistently been demonstrated to be germline genetic susceptibility markers for urinary bladder cancer (UBC). The recent shift to an agnostic genome-wide association approach led to the identification of several UBC susceptibility loci, and provided valuable leads for new mechanistic insights into UBC carcinogenesis. The markers do not have sufficient discriminatory ability yet to be applied for risk assessment in the population and the question is whether they ever will. Prognostic and predictive studies in UBC are still in their infancy compared with etiologic studies. In the future, focus on a genome-wide association approach possibly using whole-genome sequence data, consortia formation and meta-analyses, and blood and tumor tissue collection, preferably in the context of randomized controlled trials will stimulate well designed and sufficiently powered studies, and thereby enhance the elucidation of genetic prognostic and predictive markers.
Collapse
Affiliation(s)
- Anne J Grotenhuis
- Department of Epidemiology, Biostatistics & HTA, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
15
|
Briggs FBS, Goldstein BA, McCauley JL, Zuvich RL, De Jager PL, Rioux JD, Ivinson AJ, Compston A, Hafler DA, Hauser SL, Oksenberg JR, Sawcer SJ, Pericak-Vance MA, Haines JL, Barcellos LF. Variation within DNA repair pathway genes and risk of multiple sclerosis. Am J Epidemiol 2010; 172:217-24. [PMID: 20522537 DOI: 10.1093/aje/kwq086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with a prominent genetic component. The primary genetic risk factor is the human leukocyte antigen (HLA)-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has not been elucidated. The authors investigated the relation between variation in DNA repair pathway genes and risk of MS. Single-locus association testing, epistatic tests of interactions, logistic regression modeling, and nonparametric Random Forests analyses were performed by using genotypes from 1,343 MS cases and 1,379 healthy controls of European ancestry. A total of 485 single nucleotide polymorphisms within 72 genes related to DNA repair pathways were investigated, including base excision repair, nucleotide excision repair, and double-strand breaks repair. A single nucleotide polymorphism variant within the general transcription factor IIH, polypeptide 4 gene, GTF2H4, on chromosome 6p21.33 was significantly associated with MS (odds ratio = 0.7, P = 3.5 x 10(-5)) after accounting for multiple testing and was not due to linkage disequilibrium with HLA-DRB1*1501. Although other candidate genes examined here warrant further follow-up studies, collectively, these results derived from a well-powered study do not support a strong role for common variation within DNA repair pathway genes in MS.
Collapse
|
16
|
Wang J, Lippman SM, Lee JJ, Yang H, Khuri FR, Kim E, Lin J, Chang DW, Lotan R, Hong WK, Wu X. Genetic variations in regulator of G-protein signaling genes as susceptibility loci for second primary tumor/recurrence in head and neck squamous cell carcinoma. Carcinogenesis 2010; 31:1755-61. [PMID: 20627871 DOI: 10.1093/carcin/bgq138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case-control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52-5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0-2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10-2.70) and 3.05 (1.92-4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene-gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kiltie AE. Common predisposition alleles for moderately common cancers: bladder cancer. Curr Opin Genet Dev 2010; 20:218-24. [PMID: 20153630 DOI: 10.1016/j.gde.2010.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/20/2010] [Indexed: 11/30/2022]
Abstract
Bladder cancer is the 5th commonest cancer and two major risk factors are smoking and occupational chemical exposure. There is also evidence of a genetic component to its aetiology. Candidate gene studies have mostly focused on genes involved in adduct metabolism and DNA repair, including a recent consortium-based meta-analysis. Recently, two genome-wide association studies in bladder cancer have been published and a third is awaited with interest. These first two studies have identified three SNPs of genome-wide significance, two located within the 8q24 'gene desert'. These SNPs are positioned near or within loci of genes potentially implicated in cancer predisposition, namely MYC, TP63 and PSCA, although the functional significance of this is as yet unclear.
Collapse
Affiliation(s)
- Anne E Kiltie
- Gray Institute for Radiation Oncology and Biology, Old Road Campus Research Building, Headington, Oxford, United Kingdom.
| |
Collapse
|
18
|
Tumeurs des voies excrétrices urinaires supérieures sporadiques : identification de l’interaction entre l’exposition aux carcinogènes environnementaux et la susceptibilité génétique des individus. Prog Urol 2010; 20:1-10. [DOI: 10.1016/j.purol.2009.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022]
|
19
|
Abstract
PURPOSE OF REVIEW The role of genetic susceptibility in the development of urinary bladder cancer is unclear, as it is in many other types of cancer. Since 2007, however, an innovative research approach (i.e. genome-wide association studies or GWASs) has led to the identification of numerous genomic loci that harbor susceptibility factors for one or more cancer sites. All GWASs have been published in high-impact journals and the strengths of the design are acknowledged by all experts, but there is criticism about the relevance of the results. Late 2008, the first GWAS in bladder cancer was published. RECENT FINDINGS In this review, the principles of GWASs are explained, as well as their strengths and limitations. The study in bladder cancer among 4000 cases and 38,000 controls identified three new susceptibility loci at 8q24, 3q28, and 5p15 that increase the risk of bladder cancer by 22, 19, and 16%, respectively. The results of two other GWASs in bladder cancer are expected to appear this year. Joint analysis of the three studies will probably identify additional susceptibility loci. SUMMARY The results of bladder cancer GWASs may point the way to yet unknown disease mechanisms. So far, the findings are not sufficiently discriminative for risk predictions to be used in clinical care or public health.
Collapse
|
20
|
Zhu X, Chen MS, Tian LW, Li DP, Xu PL, Lin MCM, Xie D, Kung HF. Single nucleotide polymorphism of rs430397 in the fifth intron of GRP78 gene and clinical relevance of primary hepatocellular carcinoma in Han Chinese: risk and prognosis. Int J Cancer 2009; 125:1352-7. [PMID: 19533686 DOI: 10.1002/ijc.24487] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large number of data showed that allele variants in certain genes are markers for hepatocellular carcinoma (HCC). GRP78 is a stress-associated protein which is a central regulator of endoplasmic reticulum homeostasis due to its multiple functional roles in the folding, maturation and transport of proteins. A case-control study was conducted on 576 HCC patients, and 539 age- and gender-matched healthy subjects to examine whether rs430397 polymorphism in the fifth intron of GRP78 gene is associated with the development and prognosis of HCC. Polymorphism in rs430397 was analyzed by resequencing and TaqMan real-time PCR. Allele A, genotype AA and combined genotypes (AG+AA) displayed significantly increased risk for HCC (OR = 1.48, 95%CI = 1.07-1.79, p = 0.010; OR = 2.25, 95%CI = 1.08-3.38, p = 0.019; and OR = 1.50, 95%CI = 1.09-1.85, p = 0.012, respectively). Genotypes AA and AG were mainly associated with HBV-related HCC (85.8%; p < 0.00001 versus HBV noncarriers with HCC) and cirrhosis-related HCC (90%; p = 0.011 versus noncirrhosis HCC). Patients carrying the AA genotype had a shorter survival time (median 23.0 months in all cases; median 21.0 months in the cases carrying HBsAg). Like HBV and cirrhosis, the rs430397 is an independent prognostic factor influencing the survival of HCC. In conclusion, allele A and genotypes AA and AG of rs430397 may represent high risk and poor prognosis for HCC.
Collapse
Affiliation(s)
- Xiao Zhu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Khatib H, Huang W, Wang X, Tran A, Bindrim A, Schutzkus V, Monson R, Yandell B. Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. J Dairy Sci 2009; 92:2238-47. [DOI: 10.3168/jds.2008-1767] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Chen G, Chan FL, Zhang X, Chan PSF. Identification of differently expressed genes in chemical carcinogen-induced rat bladder cancers. ACTA ACUST UNITED AC 2009; 29:220-6. [PMID: 19399409 DOI: 10.1007/s11596-009-0217-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Indexed: 12/21/2022]
Abstract
Possible altered gene expression patterns in bladder tumour carcinogenesis in rat bladder cancers induced by BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine] was examined by cDNA microarray analysis of gene expression profiles. Thirty Sprague-Dawley rats were given drinking water containing 0.05% BBN ad libitum for 24 to 28 weeks. Equal numbers of control rats were given tap water without BBN. After treatment, the rat bladders were excised for RNA extraction and histopathological examinations. Total RNAs were extracted from rat transitional cell carcinoma (TCC) tissues and micro-dissected normal rat bladder epithelia. The atlas glass rat microarray was used, which included oligonucleotides of 1081 rat genes. Some of the up-regulated genes in rat bladder TCCs were further confirmed by Northern blotting. Our results showed that the transcriptions of 30 genes were significantly elevated in the rat bladder TCCs, and these included fly proto-oncogene, Lipocortin 2, COX IV, COX V a, and cathepsin D. Also, 15 genes were significantly down-regulated in the rat bladder TCCs and they included B7.1, TNFr1, APOA1 and VHL. The results of cDNA microarray analysis demonstrated that normal rat bladder epithelia and bladder TCC exhibited different and specific gene statement profiles. The increased expressions of the identified genes may play an important role in the chemically induced bladder carcinogenesis.
Collapse
Affiliation(s)
- Guangfu Chen
- Department of Urology, the General Hospital of the Chinese People's Liberation Army, Beijing, 100853, China.
| | | | | | | |
Collapse
|
23
|
Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai. Int Urol Nephrol 2009; 41:855-64. [DOI: 10.1007/s11255-009-9560-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/16/2009] [Indexed: 12/17/2022]
|