1
|
Reghupaty SC, Dall NR, Svensson KJ. Hallmarks of the metabolic secretome. Trends Endocrinol Metab 2024; 35:49-61. [PMID: 37845120 PMCID: PMC10841501 DOI: 10.1016/j.tem.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The identification of novel secreted factors is advancing at an unprecedented pace. However, there is a critical need to consolidate and integrate this knowledge to provide a framework of their diverse mechanisms, functional significance, and inter-relationships. Complicating this effort are challenges related to nonstandardized methods, discrepancies in sample handling, and inconsistencies in the annotation of unknown molecules. This Review aims to synthesize the rapidly expanding field of the metabolic secretome, encompassing the five major types of secreted factors: proteins, peptides, metabolites, lipids, and extracellular vesicles. By systematically defining the functions and detection of the components within the metabolic secretome, this Review provides a primer into the advances of the field, and how integration of the techniques discussed can provide a deeper understanding of the mechanisms underlying metabolic homeostasis and its disorders.
Collapse
Affiliation(s)
- Saranya C Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Nicholas R Dall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
2
|
Zhao Z, Khurana A, Antony F, Young JW, Hewton KG, Brough Z, Zhong T, Parker SJ, Duong van Hoa F. A Peptidisc-Based Survey of the Plasma Membrane Proteome of a Mammalian Cell. Mol Cell Proteomics 2023; 22:100588. [PMID: 37295717 PMCID: PMC10416069 DOI: 10.1016/j.mcpro.2023.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arshdeep Khurana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keeley G Hewton
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshuang Zhong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Santana-Codina N, del Rey MQ, Kapner KS, Zhang H, Gikandi A, Malcolm C, Poupault C, Kuljanin M, John KM, Biancur DE, Chen B, Das NK, Lowder KE, Hennessey CJ, Huang W, Yang A, Shah YM, Nowak JA, Aguirre AJ, Mancias JD. NCOA4-Mediated Ferritinophagy Is a Pancreatic Cancer Dependency via Maintenance of Iron Bioavailability for Iron-Sulfur Cluster Proteins. Cancer Discov 2022; 12:2180-2197. [PMID: 35771492 PMCID: PMC9437572 DOI: 10.1158/2159-8290.cd-22-0043] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC, we demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability, thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with the development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in patients with PDAC. Together, our data reveal that the maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC. SIGNIFICANCE Autophagy and iron metabolism are metabolic dependencies in PDAC. However, targeted therapies for these pathways are lacking. We identify NCOA4-mediated selective autophagy of ferritin ("ferritinophagy") as upregulated in PDAC. Ferritinophagy supports PDAC iron metabolism and thereby tumor progression and represents a new therapeutic target in PDAC. See related commentary by Jain and Amaravadi, p. 2023. See related article by Ravichandran et al., p. 2198. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Maria Quiles del Rey
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Huan Zhang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Callum Malcolm
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clara Poupault
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kristen M. John
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Douglas E. Biancur
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nupur K. Das
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristen E. Lowder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Connor J. Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wesley Huang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yatrik M. Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Rep 2021; 33:108231. [PMID: 33027658 PMCID: PMC7573785 DOI: 10.1016/j.celrep.2020.108231] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive fibrosis and hypovascularization, resulting in significant intratumoral hypoxia (low oxygen) that contributes to its aggressiveness, therapeutic resistance, and high mortality. Despite oxygen being a fundamental requirement for many cellular and metabolic processes, and the severity of hypoxia in PDAC, the impact of oxygen deprivation on PDAC biology is poorly understood. Investigating how PDAC cells survive in the near absence of oxygen, we find that PDAC cell lines grow robustly in oxygen tensions down to 0.1%, maintaining mitochondrial morphology, membrane potential, and the oxidative metabolic activity required for the synthesis of key metabolites for proliferation. Disrupting electron transfer efficiency by targeting mitochondrial respiratory supercomplex assembly specifically affects hypoxic PDAC proliferation, metabolism, and in vivo tumor growth. Collectively, our results identify a mechanism that enables PDAC cells to thrive in severe, oxygen-limited microenvironments.
Collapse
|
5
|
Liu Y, Ferguson FM, Li L, Kuljanin M, Mills CE, Subramanian K, Harshbarger W, Gondi S, Wang J, Sorger PK, Mancias JD, Gray NS, Westover KD. Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing. Cell Chem Biol 2020; 27:1229-1240.e4. [PMID: 32755567 PMCID: PMC8053042 DOI: 10.1016/j.chembiol.2020.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Wayne Harshbarger
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sudershan Gondi
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Proteomic Analysis of Cell Lines and Primary Tumors in Pancreatic Cancer Identifies Proteins Expressed Only In Vitro and Only In Vivo. Pancreas 2020; 49:1109-1116. [PMID: 32833945 DOI: 10.1097/mpa.0000000000001633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES A limited repertoire of good pancreatic ductal adenocarcinoma (PDAC) models is one of the main barriers in developing effective new PDAC treatments. We aimed to characterize 6 commonly used PDAC cell lines and compare them with PDAC patient tumor samples using proteomics. METHODS Proteomic methods were used to generate an extensive catalog of proteins from 10 PDAC surgical specimens, 9 biopsies of adjacent normal tissue, and 6 PDAC cell lines. Protein lists were interrogated to determine what extent the proteome of the cell lines reflects the proteome of primary pancreatic tumors. RESULTS We identified 7973 proteins from the cell lines, 5680 proteins from the tumor tissues, and 4943 proteins from the adjacent normal tissues. We identified 324 proteins unique to the cell lines, some of which may play a role in survival of cells in culture. Conversely, a list of 63 proteins expressed only in the patient samples, whose expression is lost in culture, may place limitations on the degree to which these model systems reflect tumor biology in vivo. CONCLUSIONS Our work offers a catalog of proteins detected in each of the PDAC cell lines, providing a useful guide for researchers seeking model systems for PDAC functional studies.
Collapse
|
7
|
Meleady P, Abdul Rahman R, Henry M, Moriarty M, Clynes M. Proteomic analysis of pancreatic ductal adenocarcinoma. Expert Rev Proteomics 2020; 17:453-467. [PMID: 32755290 DOI: 10.1080/14789450.2020.1803743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC), which represents approximately 80% of all pancreatic cancers, is a highly aggressive malignant disease and one of the most lethal among all cancers. Overall, the 5-year survival rate among all pancreatic cancer patients is less than 9%; these rates have shown little change over the past 30 years. A more comprehensive understanding of the molecular mechanisms underlying this complex disease is crucial to the development of new diagnostic tools for early detection and disease monitoring, as well as to identify new and more effective therapeutics to improve patient outcomes. AREA COVERED We summarize recent advances in proteomic strategies and mass spectrometry to identify new biomarkers for early detection and monitoring of disease progression, predict response to therapy, and to identify novel proteins that have the potential to be 'druggable' therapeutic targets. An overview of proteomic studies that have been conducted to further our mechanistic understanding of metastasis and chemotherapy resistance in PDAC disease progression will also be discussed. EXPERT COMMENTARY The results from these PDAC proteomic studies on a variety of PDAC sample types (e.g., blood, tissue, cell lines, exosomes, etc.) provide great promise of having a significant clinical impact and improving patient outcomes.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Rozana Abdul Rahman
- St. Vincent's University Hospital , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland.,St. Luke's Hospital , Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University , Dublin, Ireland
| |
Collapse
|
8
|
Parker SJ, Amendola CR, Hollinshead KER, Yu Q, Yamamoto K, Encarnación-Rosado J, Rose RE, LaRue MM, Sohn ASW, Biancur DE, Paulo JA, Gygi SP, Jones DR, Wang H, Philips MR, Bar-Sagi D, Mancias JD, Kimmelman AC. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discov 2020; 10:1018-1037. [PMID: 32341021 DOI: 10.1158/2159-8290.cd-19-0959] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine cross-talk between PSCs and PDAC is orchestrated by the utilization of specific transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGNIFICANCE: This work identifies critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specific alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifically activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Seth J Parker
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Caroline R Amendola
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Kate E R Hollinshead
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Qijia Yu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keisuke Yamamoto
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Joel Encarnación-Rosado
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Rebecca E Rose
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Madeleine M LaRue
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Albert S W Sohn
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Doug E Biancur
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Dafna Bar-Sagi
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University School of Medicine, New York, New York.
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| |
Collapse
|
9
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
10
|
Santana-Codina N, Chandhoke AS, Yu Q, Małachowska B, Kuljanin M, Gikandi A, Stańczak M, Gableske S, Jedrychowski MP, Scott DA, Aguirre AJ, Fendler W, Gray NS, Mancias JD. Defining and Targeting Adaptations to Oncogenic KRASG12C Inhibition Using Quantitative Temporal Proteomics. Cell Rep 2020; 30:4584-4599.e4. [DOI: 10.1016/j.celrep.2020.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/04/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
|
11
|
Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, Schmidt PJ, Fleming MD, Fendler W, Harper JW, Kimmelman AC, Mancias JD. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica 2019; 104:1342-1354. [PMID: 30630985 PMCID: PMC6601094 DOI: 10.3324/haematol.2018.204123] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
Ncoa4 mediates autophagic degradation of ferritin, the cytosolic iron storage complex, to maintain intracellular iron homeostasis. Recent evidence also supports a role for Ncoa4 in systemic iron homeostasis and erythropoiesis. However, the specific contribution and temporal importance of Ncoa4-mediated ferritinophagy in regulating systemic iron homeostasis and erythropoiesis is unclear. Here, we show that Ncoa4 has a critical role in basal systemic iron homeostasis and both cell autonomous and non-autonomous roles in murine erythropoiesis. Using an inducible murine model of Ncoa4 knockout, acute systemic disruption of Ncoa4 impaired systemic iron homeostasis leading to tissue ferritin and iron accumulation, a decrease in serum iron, and anemia. Mice acutely depleted of Ncoa4 engaged the Hif2a-erythropoietin system to compensate for anemia. Mice with targeted deletion of Ncoa4 specifically in the erythroid compartment developed a pronounced anemia in the immediate postnatal stage, a mild hypochromic microcytic anemia at adult stages, and were more sensitive to hemolysis with higher requirements for the Hif2a-erythropoietin axis and extramedullary erythropoiesis during recovery. These studies demonstrate the importance of Ncoa4-mediated ferritinophagy as a regulator of systemic iron homeostasis and define the relative cell autonomous and non-autonomous contributions of Ncoa4 in supporting erythropoiesis in vivo.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian Gableske
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Quiles del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Mark P Jedrychowski
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Douglas E Biancur
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wojciech Fendler
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
12
|
Navarrete-Perea J, Yu Q, Gygi SP, Paulo JA. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. J Proteome Res 2018; 17:2226-2236. [PMID: 29734811 DOI: 10.1021/acs.jproteome.8b00217] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) coupled toisobaric labeling has developed rapidly into a powerful strategy for high-throughput protein quantification. Sample multiplexing and exceptional sensitivity allow for the quantification of tens of thousands of peptides and, by inference, thousands of proteins from multiple samples in a single MS experiment. Accurate quantification demands a consistent and robust sample-preparation strategy. Here, we present a detailed workflow for SPS-MS3-based quantitative abundance profiling of tandem mass tag (TMT)-labeled proteins and phosphopeptides that we have named the streamlined (SL)-TMT protocol. We describe a universally applicable strategy that requires minimal individual sample processing and permits the seamless addition of a phosphopeptide enrichment step ("mini-phos") with little deviation from the deep proteome analysis. To showcase our workflow, we profile the proteome of wild-type Saccharomyces cerevisiae yeast grown with either glucose or pyruvate as the carbon source. Here, we have established a streamlined TMT protocol that enables deep proteome and medium-scale phosphoproteome analysis.
Collapse
Affiliation(s)
- José Navarrete-Perea
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Qing Yu
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
13
|
Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT. Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Sci Data 2018; 5:180036. [PMID: 29533394 PMCID: PMC5848788 DOI: 10.1038/sdata.2018.36] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with Alzheimer's disease (AD) and Parkinson's disease (PD) often have overlap in clinical presentation and brain neuropathology suggesting that these two diseases share common underlying mechanisms. Currently, the molecular pathways linking AD and PD are incompletely understood. Utilizing Tandem Mass Tag (TMT) isobaric labeling and synchronous precursor selection-based MS3 (SPS-MS3) mass spectrometry, we performed an unbiased quantitative proteomic analysis of post-mortem human brain tissues (n=80) from four different groups defined as controls, AD, PD, and co-morbid AD/PD cases across two brain regions (frontal cortex and anterior cingulate gyrus). In total, we identified 11 840 protein groups representing 10 230 gene symbols, which map to ~65% of the protein coding genes in brain. The utility of including two reference standards in each TMT 10-plex assay to assess intra- and inter-batch variance is also described. Ultimately, this comprehensive human brain proteomic dataset serves as a valuable resource for various research endeavors including, but not limited to, the identification of disease-specific protein signatures and molecular pathways that are common in AD and PD.
Collapse
Affiliation(s)
- Lingyan Ping
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luming Yin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marla Gearing
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J. Lah
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I. Levey
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Stepanova E, Gygi SP, Paulo JA. Filter-Based Protein Digestion (FPD): A Detergent-Free and Scaffold-Based Strategy for TMT Workflows. J Proteome Res 2018; 17:1227-1234. [PMID: 29402085 PMCID: PMC5984590 DOI: 10.1021/acs.jproteome.7b00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-throughput proteome profiling requires thorough optimization to achieve comprehensive analysis. We developed a filter aided sample preparation (FASP)-like, detergent-free method, termed Filter-Based Protein Digestion (FPD). We compared FPD to protein extraction methods commonly used in isobaric tag-based proteome profiling, namely trichloroacetic acid (TCA) and chloroform-methanol (C-M) precipitation. We divided a mammalian whole cell lysate from the SH-SY5Y neuroblastoma cell line for parallel protein processing with TCA (n = 3), C-M (n = 2), and FPD using either 10 kDa (n = 3) or 30 kDa (n = 3) molecular weight cutoff membranes. We labeled each sample with tandem mass tag (TMT) reagents to construct a TMT11-plex experiment. In total, 8654 proteins were quantified across all samples. Pairwise comparisons showed very little deviation for individual protein abundance measurements between the two FPD methods, whereas TCA and FPD showed the most difference. Specifically, membrane proteins were more readily quantified when samples were processed using TCA precipitation than other methods tested. However, globally, only 4% of proteins differed greater than 4-fold in the most divergent pair of protein extraction methods (i.e., FPD10 and TCA). We conclude that the detergent-free FPD strategy, particularly using the faster-flowing 30 kDa filter, is a seamless alteration to high-throughput TMT workflows.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
15
|
Lim MY, O’Brien J, Paulo JA, Gygi SP. Improved Method for Determining Absolute Phosphorylation Stoichiometry Using Bayesian Statistics and Isobaric Labeling. J Proteome Res 2017; 16:4217-4226. [PMID: 28985074 PMCID: PMC6301010 DOI: 10.1021/acs.jproteome.7b00571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phosphorylation stoichiometry, or occupancy, is one element of phosphoproteomics that can add useful biological context (Gerber et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6940-5). We previously developed a method to assess phosphorylation stoichiometry on a proteome-wide scale (Wu et al. Nat. Methods 2011, 8, 677-83). The stoichiometry calculation relies on identifying and measuring the levels of each nonphosphorylated counterpart peptide with and without phosphatase treatment. The method, however, is problematic in that low stoichiometry phosphopeptides can return negative stoichiometry values if measurement error is larger than the percent stoichiometry. Here, we have improved the stoichiometry method through the use of isobaric labeling with 10-plex TMT reagents. In this way, five phosphatase treated and five untreated samples are compared simultaneously so that each stoichiometry is represented by five ratio measurements with no missing values. We applied the method to determine basal stoichiometries of HCT116 cells growing in culture. With this method, we analyzed five biological replicates simultaneously with no need for phosphopeptide enrichment. Additionally, we developed a Bayesian model to estimate phosphorylation stoichiometry as a parameter confined to an interval between 0 and 1 implemented as an R/Stan script. Consequently, both point and interval estimates are consistent with the plausible range of values for stoichiometry. Finally, we report absolute stoichiometry measurements with credible intervals for 6772 phosphopeptides containing at least a single phosphorylation site.
Collapse
Affiliation(s)
- Matthew Y. Lim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jonathon O’Brien
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Yu P, Petzoldt S, Wilhelm M, Zolg DP, Zheng R, Sun X, Liu X, Schneider G, Huhmer A, Kuster B. Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Anal Chem 2017; 89:8884-8891. [DOI: 10.1021/acs.analchem.7b01356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Yu
- Technical University of Munich, D-85354 Freising, Germany
| | - Svenja Petzoldt
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | - Runsheng Zheng
- Technical University of Munich, D-85354 Freising, Germany
| | - Xuefei Sun
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Xiaodong Liu
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Günter Schneider
- Department
of Medicine II, Klinikum rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Andreas Huhmer
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Bernhard Kuster
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
- Center for Integrated Protein Science Munich, 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, 85354 Freising, Germany
| |
Collapse
|