1
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Wang X, Istvanffy R, Ye L, Teller S, Laschinger M, Diakopoulos KN, Görgülü K, Li Q, Ren L, Jäger C, Steiger K, Muckenhuber A, Vilne B, Çifcibaşı K, Reyes CM, Yurteri Ü, Kießler M, Gürçınar IH, Sugden M, Yıldızhan SE, Sezerman OU, Çilingir S, Süyen G, Reichert M, Schmid RM, Bärthel S, Oellinger R, Krüger A, Rad R, Saur D, Algül H, Friess H, Lesina M, Ceyhan GO, Demir IE. Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion. J Clin Invest 2023; 133:e166333. [PMID: 37607005 PMCID: PMC10617783 DOI: 10.1172/jci166333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Kalliope N. Diakopoulos
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II & Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Kıvanç Görgülü
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II & Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiaolin Li
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Ren
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Institute of Pathology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Muckenhuber
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Institute of Pathology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Baiba Vilne
- Bioinformatics laboratory, Riga Stradins University, Riga, Latvia
| | - Kaan Çifcibaşı
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
| | - Ümmügülsüm Yurteri
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Kießler
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ibrahim Halil Gürçınar
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maya Sugden
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Sümeyye Çilingir
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Güldal Süyen
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Maximilian Reichert
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Roland M. Schmid
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Stefanie Bärthel
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Translational Cancer Research (TranslaTUM) and Experimental Cancer Therapy
| | - Rupert Oellinger
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics
| | - Achim Krüger
- Institute of Experimental Oncology and Therapy Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Roland Rad
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics
| | - Dieter Saur
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Translational Cancer Research (TranslaTUM) and Experimental Cancer Therapy
| | - Hana Algül
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II & Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marina Lesina
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II & Comprehensive Cancer Center Munich, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Güralp Onur Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Capodanno Y, Hirth M. Targeting the Cancer-Neuronal Crosstalk in the Pancreatic Cancer Microenvironment. Int J Mol Sci 2023; 24:14989. [PMID: 37834436 PMCID: PMC10573820 DOI: 10.3390/ijms241914989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive solid tumors with a dismal prognosis and an increasing incidence. At the time of diagnosis, more than 85% of patients are in an unresectable stage. For these patients, chemotherapy can prolong survival by only a few months. Unfortunately, in recent decades, no groundbreaking therapies have emerged for PDAC, thus raising the question of how to identify novel therapeutic druggable targets to improve prognosis. Recently, the tumor microenvironment and especially its neural component has gained increasing interest in the pancreatic cancer field. A histological hallmark of PDAC is perineural invasion (PNI), whereby cancer cells invade surrounding nerves, providing an alternative route for metastatic spread. The extent of PNI has been positively correlated with early tumor recurrence and reduced overall survival. Multiple studies have shown that mechanisms involved in PNI are also involved in tumor spread and pain generation. Targeting these pathways has shown promising results in alleviating pain and reducing PNI in preclinical models. In this review, we will describe the mechanisms and future treatment strategies to target this mutually trophic interaction between cancer cells to open novel avenues for the treatment of patients diagnosed with PDAC.
Collapse
Affiliation(s)
- Ylenia Capodanno
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69117 Heidelberg, Germany
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Michael Hirth
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Shi RJ, Ke BW, Tang YL, Liang XH. Perineural invasion: A potential driver of cancer-induced pain. Biochem Pharmacol 2023; 215:115692. [PMID: 37481133 DOI: 10.1016/j.bcp.2023.115692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Perineural invasion (PNI) is the process through which tumors invade and interact with nerves. The dynamic changes in the nerves caused by PNI may induce disturbing symptoms. PNI-related cancer pain in neuro-rich tumors has attracted much attention because the occurrence of tumor-induced pain is closely related to the invasion of nerves in the tumor microenvironment. PNI-related pain might indicate the occurrence of PNI, guide the improvement of treatment strategies, and predict the unresectability of tumors and the necessity of palliative care. Although many studies have investigated PNI, its relationship with tumor-induced pain and its common mechanisms have not been summarized thoroughly. Therefore, in this review, we evaluated the relationship between PNI and cancer-associated pain. We showed that PNI is a major cause of cancer-related pain and that this pain can predict the occurrence of PNI. We also elucidated the cellular and molecular mechanisms of PNI-induced pain. Finally, we analyzed the possible targets for alleviating PNI-related pain or combined antitumor and pain management. Our findings might provide new perspectives for improving the treatment of patients with malignant tumors.
Collapse
Affiliation(s)
- Rong-Jia Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery,West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China
| | - Bo-Wen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery,West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
7
|
Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol 2023; 324:C540-C552. [PMID: 36571444 PMCID: PMC9925166 DOI: 10.1152/ajpcell.00331.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has become one of the leading causes of cancer-related deaths across the world. A lack of durable responses to standard-of-care chemotherapies renders its treatment particularly challenging and largely contributes to the devastating outcome. Gemcitabine, a pyrimidine antimetabolite, is a cornerstone in PDA treatment. Given the importance of gemcitabine in PDA therapy, extensive efforts are focusing on exploring mechanisms by which cancer cells evade gemcitabine cytotoxicity, but strategies to overcome them have not been translated into patient care. Here, we will introduce the standard treatment paradigm for patients with PDA, highlight mechanisms of gemcitabine action, elucidate gemcitabine resistance mechanisms, and discuss promising strategies to circumvent them.
Collapse
Affiliation(s)
- Alica K Beutel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Department of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, Orange, California
| |
Collapse
|
8
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
9
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
10
|
Cata JP, Uhelski ML, Gorur A, Bhoir S, Ilsin N, Dougherty PM. The µ-Opioid Receptor in Cancer and Its Role in Perineural Invasion: A Short Review and New Evidence. Adv Biol (Weinh) 2022; 6:e2200020. [PMID: 35531616 DOI: 10.1002/adbi.202200020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer is a significant public health problem worldwide. While there has been a steady decrease in the cancer death rate over the last two decades, the number of survivors has increased and, thus, cancer-related sequela. Pain affects the life of patients with cancer and survivors. Prescription opioids continue as the analgesic of choice to treat moderate-to-severe cancer-related pain. There has been controversy on whether opioids impact cancer progression by acting on cancer cells or the tumor microenvironment. The μ-opioid receptor is the site of action of prescription opioids. This receptor can participate in an important mechanism of cancer spread, such as perineural invasion. In this review, current evidence on the role of the μ-opioid receptor in cancer growth is summarized and preliminary evidence about its effect on the cross-talk between sensory neurons and malignant cells is provided.
Collapse
Affiliation(s)
- Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, 77030, USA
| | - Megan L Uhelski
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul Gorur
- Department of Investigational Cancer Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhant Bhoir
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nisa Ilsin
- Department of Anesthesiology and Perioperative Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA.,Rice University, Houston, TX, 77005, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas-MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
11
|
The Role of Neural Signaling in the Pancreatic Cancer Microenvironment. Cancers (Basel) 2022; 14:cancers14174269. [PMID: 36077804 PMCID: PMC9454556 DOI: 10.3390/cancers14174269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignant disease with a dense stroma, called the tumor microenvironment. Accumulating evidence indicates the important role of sympathetic, parasympathetic, and sensory nerves in the tumor microenvironment of various cancers, including pancreatic cancer. Cancer cells and neural cells interact with each other to form a complex network and cooperatively promote cancer growth and invasion. In this review article, we describe the current understanding of the role of nerves in the tumor microenvironment. Abstract Pancreatic cancer is one of the most lethal malignant diseases. Various cells in the tumor microenvironment interact with tumor cells and orchestrate to support tumor progression. Several kinds of nerves are found in the tumor microenvironment, and each plays an essential role in tumor biology. Recent studies have shown that sympathetic, parasympathetic, and sensory neurons are found in the pancreatic cancer microenvironment. Neural signaling not only targets neural cells, but tumor cells and immune cells via neural receptors expressed on these cells, through which tumor growth, inflammation, and anti-tumor immunity are affected. Thus, these broad-range effects of neural signaling in the pancreatic cancer microenvironment may represent novel therapeutic targets. The modulation of neural signaling may be a therapeutic strategy targeting the whole tumor microenvironment. In this review, we describe the current understanding of the role of nerves in the tumor microenvironment of various cancers, with an emphasis on pancreatic cancer. We also discuss the underlying mechanisms and the possibility of therapeutic applications.
Collapse
|
12
|
Miyahara Y, Takano S, Sogawa K, Tomizawa S, Furukawa K, Takayashiki T, Kuboki S, Ohtsuka M. Prosaposin, tumor-secreted protein, promotes pancreatic cancer progression by decreasing tumor-infiltrating lymphocytes. Cancer Sci 2022; 113:2548-2559. [PMID: 35633503 PMCID: PMC9357616 DOI: 10.1111/cas.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Glycoproteins produced by tumor cells are involved in cancer progression, metastasis, and the immune response, and serve as possible therapeutic targets. Considering the dismal outcomes of pancreatic ductal adenocarcinoma (PDAC) due to its unique tumor microenvironment, which is characterized by low antitumor T-cell infiltration, we hypothesized that tumor-derived glycoproteins may serve as regulating the tumor microenvironment. We used glycoproteomics with tandem mass tag labeling to investigate the culture media of three human PDAC cell lines, and attempted to identify the key secreted proteins from PDAC cells. Among the identified glycoproteins, prosaposin (PSAP) was investigated for its functional contribution to PDAC progression. PSAP is highly expressed in various PDAC cell lines; however, knockdown of intrinsic PSAP expression did not affect the proliferation and migration capacities. Based on the immunohistochemistry of resected human PDAC tissues, high PSAP expression was associated with poor prognosis in patients with PDAC. Notably, tumors with high PSAP expression showed significantly lower CD8+ T-cell infiltration than those with low PSAP expression. Furthermore, PSAP stimulation decreased the proportion of CD8+ T cells in peripheral blood monocytes. Finally, in an orthotopic transplantation model, the number of CD8+ T cells in the PSAP shRNA groups was significantly increased, resulting in a decreased tumor volume compared with that in the control shRNA group. PSAP suppresses CD8+ T-cell infiltration, leading to the promotion of PDAC progression. However, further studies are warranted to determine whether this study contributes to the development of a novel immunomodulating therapy for PDAC.
Collapse
Affiliation(s)
- Yoji Miyahara
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Shigetsugu Takano
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental ScienceAzabu UniversityKanagawaJapan
| | - Satoshi Tomizawa
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Katsunori Furukawa
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Tsukasa Takayashiki
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Satoshi Kuboki
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| | - Masayuki Ohtsuka
- Department of General SurgeryGraduate School of Medicine, Chiba UniversityChibaJapan
| |
Collapse
|
13
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
14
|
Qin T, Xiao Y, Qian W, Wang X, Gong M, Wang Q, An R, Han L, Duan W, Ma Q, Wang Z. HGF/c-Met pathway facilitates the perineural invasion of pancreatic cancer by activating the mTOR/NGF axis. Cell Death Dis 2022; 13:387. [PMID: 35449152 PMCID: PMC9023560 DOI: 10.1038/s41419-022-04799-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Perineural invasion (PNI) is a pathologic feature of pancreatic cancer and is associated with poor outcomes, metastasis, and recurrence in pancreatic cancer patients. However, the molecular mechanism of PNI remains unclear. The present study aimed to investigate the mechanism that HGF/c-Met pathway facilitates the PNI of pancreatic cancer. In this study, we confirmed that c-Met expression was correlated with PNI in pancreatic cancer tissues. Activating the HGF/c-Met signaling pathway potentiated the expression of nerve growth factor (NGF) to recruit nerves and promote the PNI. Activating the HGF/c-Met signaling pathway also enhanced the migration and invasion ability of cancer cells to facilitate cancer cells invading nerves. Mechanistically, HGF/c-Met signaling pathway can active the mTOR/NGF axis to promote the PNI of pancreatic cancer. Additionally, we found that knocking down c-Met expression inhibited cancer cell migration along the nerve, reduced the damage of the sciatic nerve caused by cancer cells and protected the function of the sciatic nerve in vivo. Taken together, our findings suggest a supportive mechanism of the HGF/c-Met signaling pathway in promoting PNI by activating the mTOR/NGF axis in pancreatic cancer. Blocking the HGF/c-Met signaling pathway may be an effective target for the treatment of PNI.
Collapse
Affiliation(s)
- Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Centre for Pancreatic Diseases of Xi'an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Centre for Pancreatic Diseases of Xi'an Jiaotong University, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Centre for Pancreatic Diseases of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Centre for Pancreatic Diseases of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Ahmadi N, Kelly G, Low TH(H, Clark J, Gupta R. Molecular factors governing perineural invasion in malignancy. Surg Oncol 2022; 42:101770. [DOI: 10.1016/j.suronc.2022.101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022]
|
16
|
Goluba K, Kunrade L, Riekstina U, Parfejevs V. Schwann Cells in Digestive System Disorders. Cells 2022; 11:832. [PMID: 35269454 PMCID: PMC8908985 DOI: 10.3390/cells11050832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Vadims Parfejevs
- Faculty of Medicine, University of Latvia, House of Science, Jelgavas Str. 3, LV-1004 Riga, Latvia; (K.G.); (L.K.); (U.R.)
| |
Collapse
|
17
|
Autophagic Schwann cells promote perineural invasion mediated by the NGF/ATG7 paracrine pathway in pancreatic cancer. J Exp Clin Cancer Res 2022; 41:48. [PMID: 35109895 PMCID: PMC8809009 DOI: 10.1186/s13046-021-02198-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Background Perineural invasion (PNI) and autophagy are two common features in the tumor microenvironment of pancreatic cancer (PanCa) and have a negative effect on prognosis. Potential mediator cells and the molecular mechanism underlying their relationships need to be fully elucidated. Methods To investigate the autophagy of Schwann cells (SCs) in PNI, we reproduced the microenvironment of PNI by collecting clinical PNI tissue, performing sciatic nerve injection of nude mice with cancer cells and establishing a Dorsal root ganglion (DRG) coculture system with cancer cell lines. Autophagy was detected by IHC, IF, transmission electron microscopy (TEM) and western blotting assays. Apoptosis was detected by IF, TEM and western blotting. NGF targeting molecular RO 08–2750(RO) and the autophagy inhibitor Chloroquine (CQ) were utilized to evaluate the effect on autophagy and apoptosis in SCs and PanCa cells in PNI samples. Results SC autophagy is activated in PNI by paracrine NGF from PanCa cells. Autophagy-activated Schwann cells promote PNI through a) enhanced migration and axon guidance toward PanCa cells and b) increased chemoattraction to PanCa cells. The NGF-targeting reagent RO and autophagy inhibitor CQ inhibited Schwann cell autophagic flux and induced Schwann cell apoptosis. Moreover, RO and CQ could induce PanCa cell apoptosis and showed good therapeutic effects in the PNI model. Conclusions PanCa cells can induce autophagy in SCs through paracrine pathways such as the NGF/ATG7 pathway. Autophagic SCs exert a “nerve-repair like effect”, induce a high level of autophagy of cancer cells, provide a “beacon” for the invasion of cancer cells to nerve fibers, and induce directional growth of cancer cells. Targeting NGF and autophagy for PNI treatment can block nerve infiltration and is expected to provide new directions and an experimental basis for the research and treatment of nerve infiltration in pancreatic cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02198-w.
Collapse
|
18
|
Molecular and Cellular Mechanisms of Perineural Invasion in Oral Squamous Cell Carcinoma: Potential Targets for Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13236011. [PMID: 34885121 PMCID: PMC8656475 DOI: 10.3390/cancers13236011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Squamous cell carcinoma is the most common type of oral cavity cancer. It can spread along and invade nerves in a process called perineural invasion. Perineural invasion can increase the chances of tumor recurrence and reduce survival in patients with oral cancer. Understanding how oral cancer interacts with nerves to facilitate perineural invasion is an important area of research. Targeting key events that contribute to perineural invasion in oral cavity cancer may reduce tumor recurrence and improve survival. In this review, we describe the impact of perineural invasion in oral cancer and the mechanisms that contribute to perineural invasion. Highlighting the key events of perineural invasion is important for the identification and testing of novel therapies for oral cancer with perineural invasion. Abstract The most common oral cavity cancer is squamous cell carcinoma (SCC), of which perineural invasion (PNI) is a significant prognostic factor associated with decreased survival and an increased rate of locoregional recurrence. In the classical theory of PNI, cancer was believed to invade nerves directly through the path of least resistance in the perineural space; however, more recent evidence suggests that PNI requires reciprocal signaling interactions between tumor cells and nerve components, particularly Schwann cells. Specifically, head and neck SCC can express neurotrophins and neurotrophin receptors that may contribute to cancer migration towards nerves, PNI, and neuritogenesis towards cancer. Through reciprocal signaling, recent studies also suggest that Schwann cells may play an important role in promoting PNI by migrating toward cancer cells, intercalating, and dispersing cancer, and facilitating cancer migration toward nerves. The interactions of neurotrophins with their high affinity receptors is a new area of interest in the development of pharmaceutical therapies for many types of cancer. In this comprehensive review, we discuss diagnosis and treatment of oral cavity SCC, how PNI affects locoregional recurrence and survival, and the impact of adjuvant therapies on tumors with PNI. We also describe the molecular and cellular mechanisms associated with PNI, including the expression of neurotrophins and their receptors, and highlight potential targets for therapeutic intervention for PNI in oral SCC.
Collapse
|
19
|
Scheff NN, Saloman JL. Neuroimmunology of cancer and associated symptomology. Immunol Cell Biol 2021; 99:949-961. [PMID: 34355434 DOI: 10.1111/imcb.12496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Evolutionarily the nervous system and immune cells have evolved to communicate with each other to control inflammation and host responses against injury. Recent findings in neuroimmune communication demonstrate that these mechanisms extend to cancer initiation and progression. Lymphoid structures and tumors, which are often associated with inflammatory infiltrate, are highly innervated by multiple nerve types (e.g. sympathetic, parasympathetic, sensory). Recent preclinical and clinical studies demonstrate that targeting the nervous system could be a therapeutic strategy to promote anti-tumor immunity while simultaneously reducing cancer-associated neurological symptoms, such as chronic pain, fatigue, and cognitive impairment. Sympathetic nerve activity is associated with physiological or psychological stress, which can be induced by tumor development and cancer diagnosis. Targeting the stress response through suppression of sympathetic activity or activation of parasympathetic activity has been shown to drive activation of effector T cells and inhibition of myeloid derived suppressor cells within the tumor. Additionally, there is emerging evidence that sensory nerves may regulate tumor growth and metastasis by promoting or inhibiting immunosuppression in a tumor-type specific manner. Since neural effects are often tumor-type specific, further study is required to optimize clinical therapeutic strategies. This review examines the emerging evidence that neuroimmune communication can regulate anti-tumor immunity as well as contribute to development of cancer-related neurological symptoms.
Collapse
Affiliation(s)
- Nicole N Scheff
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jami L Saloman
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Affiliation(s)
- Ruth A White
- Department of Medicine, Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Li J, Kang R, Tang D. Cellular and molecular mechanisms of perineural invasion of pancreatic ductal adenocarcinoma. Cancer Commun (Lond) 2021; 41:642-660. [PMID: 34264020 PMCID: PMC8360640 DOI: 10.1002/cac2.12188] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a unique tumor microenvironment surrounded by an interlaced network of cancer and noncancerous cells. Recent works have revealed that the dynamic interaction between cancer cells and neuronal cells leads to perineural invasion (PNI), a clinical pathological feature of PDAC. The formation and function of PNI are dually regulated by molecular (e.g., involving neurotrophins, cytokines, chemokines, and neurotransmitters), metabolic (e.g., serine metabolism), and cellular mechanisms (e.g., involving Schwann cells, stromal cells, T cells, and macrophages). Such integrated mechanisms of PNI not only support tumor development, growth, invasion, and metastasis but also mediate the formation of pain, all of which are closely related to poor disease prognosis in PDAC. This review details the modulation, signaling pathways, detection, and clinical relevance of PNI and highlights the opportunities for further exploration that may benefit PDAC patients.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
22
|
Xelwa N, Candy GP, Devar J, Omoshoro-Jones J, Smith M, Nweke EE. Targeting Growth Factor Signaling Pathways in Pancreatic Cancer: Towards Inhibiting Chemoresistance. Front Oncol 2021; 11:683788. [PMID: 34195085 PMCID: PMC8236623 DOI: 10.3389/fonc.2021.683788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most deadly cancers, ranking amongst the top leading cause of cancer related deaths in developed countries. Features such as dense stroma microenvironment, abnormal signaling pathways, and genetic heterogeneity of the tumors contribute to its chemoresistant characteristics. Amongst these features, growth factors have been observed to play crucial roles in cancer cell survival, progression, and chemoresistance. Here we review the role of the individual growth factors in pancreatic cancer chemoresistance. Importantly, the interplay between the tumor microenvironment and chemoresistance is explored in the context of pivotal role played by growth factors. We further describe current and future potential therapeutic targeting of these factors.
Collapse
|
23
|
Dlamini Z, Mathabe K, Padayachy L, Marima R, Evangelou G, Syrigos KN, Bianchi A, Lolas G, Hull R. Many Voices in a Choir: Tumor-Induced Neurogenesis and Neuronal Driven Alternative Splicing Sound Like Suspects in Tumor Growth and Dissemination. Cancers (Basel) 2021; 13:cancers13092138. [PMID: 33946706 PMCID: PMC8125307 DOI: 10.3390/cancers13092138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Significant progress has recently been made in understanding the role of the neuronal system in cancer biology, in many solid tumors such as prostate, breast, pancreatic, gastric and brain cancers. Solid tumors and the nervous system appear to influence each other’s development both directly and indirectly. A recurring element in such interactions is constituted by nerve-related substances such as neurotransmitters and neurotrophins, to which the first part of the current review is devoted. The second part of the review focuses on the potential role played by alternative splicing in cancer progression associated with neural signaling. Alternative splicing is the process where pre-mRNA is cut and re-ligated in different ways to give rise to multiple protein isoforms whose expression profile is often cancer specific. Alternative splicing is known to take place in the mRNA of genes that code for proteins involved in neuronal development and the creation of new nerve fibers. The change in alternative splicing patterns that occur as tumors develop and progress may make these splice variants potential targets for the development of drug treatments. They may also serve as diagnostic or prognostic biomarkers. Abstract During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Correspondence:
| | - Kgomotso Mathabe
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Urology, University of Pretoria, Pretoria 0084, South Africa
| | - Llewellyn Padayachy
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Neurosurgery, University of Pretoria, Pretoria 0084, South Africa
| | - Rahaba Marima
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| | - George Evangelou
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Konstantinos N. Syrigos
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | | | - Georgios Lolas
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Rodney Hull
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| |
Collapse
|
24
|
Abstract
AbstractPituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse functions. PACAP binds to specific PAC1 and non-specific VPAC1/2 receptors. PACAP is considered as a growth factor, as it plays important roles during development and participates in reparative processes. Highest concentrations are found in the nervous system and endocrine glands, where several functions are known, including actions in tissue growth, differentiation and tumour development. Therefore, we have investigated expression of PACAP and its receptors in different tumours, including those of endocrine glands. We showed earlier that PACAP and PAC1 receptor staining intensity decreased in pancreatic ductal adenocarcinoma. In the present study we aimed to investigate alterations of PACAP and PAC1 receptor in human insulinoma and compared the immunostaining pattern with samples from chronic pancreatitis patients. We collected perioperative and histological data of patients who underwent operation because of insulinoma or chronic pancreatitis over a five-year-long period. Histology showed chronic pancreatitis with severe scar formation in pancreatitis patients, while tumour samples evidenced Grade 1 or 2 insulinoma. PACAP and PAC1 receptor expression was studied using immunohistochemistry. Staining intensity was very strong in the Langerhans islets of normal tissue and discernible staining was also observed in the exocrine pancreas. Immunostaining intensity for both PACAP and PAC1 receptor was markedly weaker in insulinoma samples, and disappeared from chronic pancreatitis samples except for intact islets. These findings show that PAC1 receptor/PACAP signalling is altered in insulinoma and this suggests a possible involvement of this system in tumour growth or differentiation.
Collapse
|
25
|
CD74 promotes perineural invasion of cancer cells and mediates neuroplasticity via the AKT/EGR-1/GDNF axis in pancreatic ductal adenocarcinoma. Cancer Lett 2021; 508:47-58. [PMID: 33766751 DOI: 10.1016/j.canlet.2021.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/06/2023]
Abstract
Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.
Collapse
|
26
|
Tan X, Sivakumar S, Bednarsch J, Wiltberger G, Kather JN, Niehues J, de Vos-Geelen J, Valkenburg-van Iersel L, Kintsler S, Roeth A, Hao G, Lang S, Coolsen ME, den Dulk M, Aberle MR, Koolen J, Gaisa NT, Olde Damink SWM, Neumann UP, Heij LR. Nerve fibers in the tumor microenvironment in neurotropic cancer-pancreatic cancer and cholangiocarcinoma. Oncogene 2021; 40:899-908. [PMID: 33288884 PMCID: PMC7862068 DOI: 10.1038/s41388-020-01578-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) are both deadly cancers and they share many biological features besides their close anatomical location. One of the main histological features is neurotropism, which results in frequent perineural invasion. The underlying mechanism of cancer cells favoring growth by and through the nerve fibers is not fully understood. In this review, we provide knowledge of these cancers with frequent perineural invasion. We discuss nerve fiber crosstalk with the main different components of the tumor microenvironment (TME), the immune cells, and the fibroblasts. Also, we discuss the crosstalk between the nerve fibers and the cancer. We highlight the shared signaling pathways of the mechanisms behind perineural invasion in PDAC and CCA. Hereby we have focussed on signaling neurotransmitters and neuropeptides which may be a target for future therapies. Furthermore, we have summarized retrospective results of the previous literature about nerve fibers in PDAC and CCA patients. We provide our point of view in the potential for nerve fibers to be used as powerful biomarker for prognosis, as a tool to stratify patients for therapy or as a target in a (combination) therapy. Taking the presence of nerves into account can potentially change the field of personalized care in these neurotropic cancers.
Collapse
Affiliation(s)
- Xiuxiang Tan
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jan Bednarsch
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Jan Niehues
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith de Vos-Geelen
- Division of Medical Oncology, Department of Internal Medicine, GROW School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Liselot Valkenburg-van Iersel
- Division of Medical Oncology, Department of Internal Medicine, GROW School for Oncology and Development Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Svetlana Kintsler
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Anjali Roeth
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Guangshan Hao
- Translational Neurosurgery and Neurobiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Sven Lang
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mariëlle E Coolsen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marcel den Dulk
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Merel R Aberle
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Jarne Koolen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ulf P Neumann
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lara R Heij
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany.
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
27
|
Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, Gikandi A, Wang H, Mancias JD, Schneider RJ, Pacold ME, Kimmelman AC. Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer. Cell 2020; 183:1202-1218.e25. [PMID: 33142117 DOI: 10.1016/j.cell.2020.10.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumors have a nutrient-poor, desmoplastic, and highly innervated tumor microenvironment. Although neurons can release stimulatory factors to accelerate PDAC tumorigenesis, the metabolic contribution of peripheral axons has not been explored. We found that peripheral axons release serine (Ser) to support the growth of exogenous Ser (exSer)-dependent PDAC cells during Ser/Gly (glycine) deprivation. Ser deprivation resulted in ribosomal stalling on two of the six Ser codons, TCC and TCT, and allowed the selective translation and secretion of nerve growth factor (NGF) by PDAC cells to promote tumor innervation. Consistent with this, exSer-dependent PDAC tumors grew slower and displayed enhanced innervation in mice on a Ser/Gly-free diet. Blockade of compensatory neuronal innervation using LOXO-101, a Trk-NGF inhibitor, further decreased PDAC tumor growth. Our data indicate that axonal-cancer metabolic crosstalk is a critical adaptation to support PDAC growth in nutrient poor environments.
Collapse
Affiliation(s)
- Robert S Banh
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Douglas E Biancur
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Keisuke Yamamoto
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Beth Walters
- Department of Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Miljan Kuljanin
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Hale Family Pancreatic Cancer Research Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ajami Gikandi
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Hale Family Pancreatic Cancer Research Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huamin Wang
- Department of Anatomical Pathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Hale Family Pancreatic Cancer Research Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert J Schneider
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA; Department of Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michael E Pacold
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
28
|
Mai L, Huang F, Zhu X, He H, Fan W. Role of Nerve Growth Factor in Orofacial Pain. J Pain Res 2020; 13:1875-1882. [PMID: 32801845 PMCID: PMC7399448 DOI: 10.2147/jpr.s250030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Some chronic pain conditions in the orofacial region are common and the mechanisms underlying orofacial pain are unresolved. Nerve growth factor (NGF) is a member of a family of neurotrophins and regulates the growth, maintenance and development of neurons. Increasing evidence suggests that NGF plays a crucial role in the generation of pain and hyperalgesia in different pain states. This review investigates the role of NGF in orofacial pain and their underlying cellular mechanisms, which may provide essential guidance to drug-discovery programmes. A systemic literature search was conducted in Pubmed focusing on NGF and orofacial pain. Articles were reviewed, and those discussing in vitro studies, animal evidence, clinical course, and possible mechanisms were summarized. We found a hyperalgesic effect of NGF in peripheral sensitization in orofacial pain models. We also summarize the current knowledge regarding NGF-dependent pain mechanism, which is initiated by retrograde transport of the ligand-receptor complex, ensuing transcriptional regulation of many important nociceptor genes involved in nociceptive processing. Phase III trials suggest that anti-NGF drug is endorsed with anti-inflammatory and pain-relieving effects with good tolerance in a variety of pain conditions, including pain associated with osteoarthritis and chronic lower back pain. Based on the data reviewed herein, NGF is believed to be an important hyperalgesic mediator in orofacial pain. The identification of underlying mechanisms and pathways of orofacial pain opens new frontiers for pain management.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Xiao Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, People's Republic of China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
29
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Wang K, He H. Pancreatic Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:243-257. [PMID: 34185297 DOI: 10.1007/978-3-030-59038-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreatic ductal adenocarcinoma (PDAC) microenvironment is a diverse and complex milieu of immune, stromal, and tumor cells and is characterized by a dense stroma, which mediates the interaction between the tumor and the immune system within the tumor microenvironment (TME). The interaction between stromal and tumor cells signals and shapes the immune infiltration of TME. The desmoplastic compartment contains infiltrated immune cells including tumor-associated macrophages (TAMs) and large numbers of fibroblasts/myofibroblasts dominated by pancreatic stellate cells (PSCs) which contribute to fibrosis. The highly fibrotic stroma with its extensive infiltration of immunosuppressive cells forms the major component of the pro-tumorigenic microenvironment (Laklai et al. Nat Med 22:497-505, 2016, Zhu et al. Cancer Res 74:5057-5069, 2014) provides a barrier to the delivery of cytotoxic agents and limits T-cell access to tumor cells (Feig et al. Proc Natl Acad Sci USA 110:20212-20217, 2013, Provenzano et al Cancer Cell 21:418-429, 2012). Activated PSCs reduced infiltration of cytotoxic T cells to the juxtatumoral stroma (immediately adjacent to the tumor epithelial cells) of PDAC (Ene-Obong et al. Gastroenterology 145:1121-1132, 2013). M1 macrophages activate an immune response against tumor, but M2 macrophages are involved in immunosuppression promoting tumor progression (Noy and Pollard Immunity 41:49-61, 2014, Ruffell et al. Trends Immunol 33:119-126, 2012). The desmoplastic stroma is reported to protect tumor cells against chemotherapies, promoting their proliferation and migration. However, experimental depletion of the desmoplastic stroma has led to more aggressive cancers in animal studies (Nielsen et al. World J Gastroenterol 22:2678-2700, 2016). Hence reprogramming rather than simple depletion of the PDAC stroma has the potential for developing new therapeutic strategies for PC treatment. Modulation of PSCs/fibrosis and immune infiltration/inflammation composes the major aspects of TME reprogramming.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.
| |
Collapse
|
31
|
Ferencz S, Reglodi D, Kaszas B, Bardosi A, Toth D, Vekony Z, Vicena V, Karadi O, Kelemen D. PACAP and PAC1 receptor expression in pancreatic ductal carcinoma. Oncol Lett 2019; 18:5725-5730. [PMID: 31788045 PMCID: PMC6865831 DOI: 10.3892/ol.2019.10971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic carcinoma is one of the most malignant diseases and is associated with a poor survival rate. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide that acts on three different G protein-coupled receptors: the specific PAC1 and the VPAC1/2 that also bind vasoactive intestinal peptide. PACAP is widely distributed in the body and has diverse physiological effects. Among other things, it acts as a trophic factor and influences proliferation and differentiation of several different cells both under normal circumstances and tumourous transformation. Changes of PACAP and its receptors have been shown in various tumour types. However, it is not known whether PACAP and its specific receptor are altered in pancreatic cancer. Perioperative data of patients with pancreas carcinoma was investigated over a five-year period. Histological results showed Grade 2 or Grade 3 adenocarcinoma in most cases. PACAP and PAC1 receptor expression were investigated by immunohistochemistry. Staining intensity of PAC1 receptor was strong in normal tissues both in the exocrine and endocrine parts of the pancreas, the receptor staining was markedly weaker in the adenocarcinoma. PACAP immunostaining was weak in the exocrine part and very strong in the islets and nerve elements in non-tumourous tissues. The PACAP immunostaining almost disappeared in the adenocarcinoma samples. Based on these findings a decrease or lack of the PAC1 receptor/PACAP signalling might have an influence on tumour growth and/or differentiation.
Collapse
Affiliation(s)
- Sandor Ferencz
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Balint Kaszas
- Department of Pathology, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Attila Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, and Proteopath GmbH, Trier 54296, Germany
| | - Denes Toth
- Department of Forensic Medicine, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Zsofia Vekony
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Oszkar Karadi
- Department of Oncology, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Dezso Kelemen
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| |
Collapse
|
32
|
Jurcak N, Zheng L. Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve. Pharmacol Ther 2019; 200:126-134. [PMID: 31047906 PMCID: PMC6626552 DOI: 10.1016/j.pharmthera.2019.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a dismal malignant disease with the lowest stage-combined overall survival rate compared to any other cancer type. PDA has a unique tumor microenvironment (TME) comprised of a dense desmoplastic reaction comprising over two-thirds of the total tumor volume. The TME is comprised of cellular and acellular components that all orchestrate different signaling mechanisms together to promote tumorigenesis and disease progression. Particularly, the neural portion of the TME has recently been appreciated in PDA progression. Neural remodeling and perineural invasion (PNI), the neoplastic invasion of tumor cells into nerves, are common adverse histological characteristics of PDA associated with a worsened prognosis and increased cancer aggressiveness. The TME undergoes dramatic neural hypertrophy and increased neural density that is associated with many signaling pathways to promote cell invasion. PNI is also considered one of the main routes for cancer recurrence and metastasis after surgical resection, which remains the only current cure for PDA. Recent studies have shown multiple cell types in the TME signal through autocrine and paracrine mechanisms to enhance perineural invasion, pancreatic neural remodeling and disease progression in PDA. This review summarizes the current findings of the signaling mechanisms and cellular and molecular players involved in neural signaling in the TME of PDA.
Collapse
Affiliation(s)
- Noelle Jurcak
- Graduate Program in Cellular and Molecular Medicine, Baltimore, MD 21287, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, Baltimore, MD 21287, USA; Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
33
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
34
|
Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, Taveggia C, Falconi M. Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers (Basel) 2019; 11:E893. [PMID: 31248001 PMCID: PMC6678884 DOI: 10.3390/cancers11070893] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Marta Pellegatta
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Stefano Crippa
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Marco Schiavo Lena
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giulio Belfiori
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy.
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Carla Taveggia
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Massimo Falconi
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
35
|
Alrawashdeh W, Jones R, Dumartin L, Radon TP, Cutillas PR, Feakins RM, Dmitrovic B, Demir IE, Ceyhan GO, Crnogorac‐Jurcevic T. Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling. Mol Oncol 2019; 13:1075-1091. [PMID: 30690892 PMCID: PMC6487729 DOI: 10.1002/1878-0261.12463] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Perineural invasion (PNI) is a common and characteristic feature of pancreatic ductal adenocarcinoma (PDAC) that is associated with poor prognosis, tumor recurrence, and generation of pain. However, the molecular alterations in cancer cells and nerves within PNI have not previously been comprehensively analyzed. Here, we describe our proteomic analysis of the molecular changes underlying neuro-epithelial interactions in PNI using liquid chromatography-mass spectrometry (LC-MS/MS) in microdissected PNI and non-PNI cancer, as well as in invaded and noninvaded nerves from formalin-fixed, paraffin-embedded PDAC tissues. In addition, an in vitro model of PNI was developed using a co-culture system comprising PDAC cell lines and PC12 cells as the neuronal element. The overall proteomic profiles of PNI and non-PNI cancer appeared largely similar. In contrast, upon invasion by cancer cells, nerves demonstrated widespread plasticity with a pattern consistent with neuronal injury. The up-regulation of SCG2 (secretogranin II) and neurosecretory protein VGF (nonacronymic) in invaded nerves in PDAC tissues was further validated using immunohistochemistry. The tested PDAC cell lines were found to be able to induce neuronal plasticity in PC12 cells in our in vitro established co-culture model. Changes in expression levels of VGF, as well as of two additional proteins previously reported to be overexpressed in PNI, Nestin and Neuromodulin (GAP43), closely recapitulated our proteomic findings in PDAC tissues. Furthermore, induction of VGF, while not necessary for PC12 survival, mediated neurite extension induced by PDAC cell lines. In summary, here we report the proteomic alterations underlying PNI in PDAC and confirm that PDAC cells are able to induce neuronal plasticity. In addition, we describe a novel, simple, and easily adaptable co-culture model for in vitro study of neuro-epithelial interactions.
Collapse
Affiliation(s)
- Wasfi Alrawashdeh
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | | | - Laurent Dumartin
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Tomasz P. Radon
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R. Cutillas
- Centre for Haemato‐OncologyBart Cancer InstituteQueen Mary University of LondonUK
| | | | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineFaculty of MedicineUniversity of OsijekCroatia
| | - Ihsan Ekin Demir
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | - Guralp O. Ceyhan
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | | |
Collapse
|
36
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|