1
|
Lee D, Kim KH, Jang TS, Kang KS. Identification of bioactive compounds from mulberry enhancing glucose-stimulated insulin secretion. Bioorg Med Chem Lett 2021; 43:128096. [PMID: 33984475 DOI: 10.1016/j.bmcl.2021.128096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Previously, we isolated six heterocyclic compounds (1-6) from the fruits of mulberry trees (Morus alba L.) and determined that loliolide affords rat pancreatic islet β-cell (INS-1) protection against streptozotocin‑induced cytotoxicity. In the present study, we further investigated the effect of the six heterocyclic compounds (1-6) on glucose-stimulated insulin secretion (GSIS) in INS-1 cells. Among them, (R)‑5‑hydroxypyrrolidin‑2‑one(1) and indole (6) increased GSIS without inducing cytotoxicity. Additionally, compounds 1 and 6 enhanced the phosphorylation of total insulin receptor substrate-2, phosphatidylinositol 3-kinase, and Akt, and activated pancreatic and duodenal homeobox-1, which play a crucial role in β-cell functions related to insulin secretion. Collectively, these findings indicate that (R)‑5‑hydroxypyrrolidin‑2‑one(1) and indole (6), isolated from M. alba fruits, may be beneficial in managing type 2 diabetes.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Tae Su Jang
- Department of Medicine, Dankook University, Cheonan, Chungnam 31116, Republic of Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
2
|
Jo J, Lee D, Park YH, Choi H, Han J, Park DH, Choi YK, Kwak J, Yang MK, Yoo JW, Moon HR, Geum D, Kang KS, Yun H. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. Eur J Med Chem 2021; 217:113325. [PMID: 33765605 DOI: 10.1016/j.ejmech.2021.113325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
A novel series of 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides was designed, synthesized and evaluated for their biological activities on glucose-stimulated insulin secretion (GSIS). The cytotoxicity of all 41 novel compounds was screened to assess their pharmacological safety in pancreatic β-cells. A two-step optimization process was carried out to establish the structure-activity relationship for this class and subsequently we identified the most active analogue 26. Further modification study of 26 evidenced the necessity of N-hydrogens in the core architecture. Protein expression analysis suggested that 26 increases insulin secretion via the activation of the upstream effector of pancreatic and duodenal homeobox 1 (PDX-1), which is an important factor promoting GSIS. Moreover, the administration of 26 effectively augmented glucose uptake in C2C12 myotube cells via the suppression of Mitsugumin 53 (MG53), an insulin receptor substrate 1 (IRS-1) ubiquitination E3 ligase.
Collapse
Affiliation(s)
- Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yeong Hye Park
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeonjin Choi
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinhee Han
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - You-Kyung Choi
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jinsook Kwak
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Min-Kyu Yang
- Mother's Pharmaceutical, Seoul, 08506, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, Korea University Medical School, Seoul, 02841, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Lee D, Lee JS, Sezirahiga J, Kwon HC, Jang DS, Kang KS. Bioactive Phytochemicals Isolated from Akebia quinata Enhances Glucose-Stimulated Insulin Secretion by Inducing PDX-1. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1087. [PMID: 32847055 PMCID: PMC7570369 DOI: 10.3390/plants9091087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
Abstract
Chocolate vine (Akebia quinata) is consumed as a fruit and is also used in traditional medicine. In order to identify the bioactive components of A. quinata, a phytosterol glucoside stigmasterol-3-O-β-d-glucoside (1), three triterpenoids maslinic acid (2), scutellaric acid (3), and hederagenin (4), and three triterpenoidal saponins akebia saponin PA (5), hederacoside C (6), and hederacolchiside F (7) were isolated from a 70% EtOH extract of the fruits of A. quinata (AKQU). The chemical structures of isolates 1-7 were determined by analyzing the 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data. Here, we evaluated the effects of AKQU and compounds 1-7 on insulin secretion using the INS-1 rat pancreatic β-cell line. Glucose-stimulated insulin secretion (GSIS) was evaluated in INS-1 cells using the GSIS assay. The expression levels of the proteins related to pancreatic β-cell function were detected by Western blotting. Among the isolates, stigmasterol-3-O-β-d-glucoside (1) exhibited strong GSIS activity and triggered the overexpression of pancreas/duodenum homeobox protein-1 (PDX-1), which is implicated in the regulation of pancreatic β-cell survival and function. Moreover, isolate 1 markedly induced the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), and Akt, which regulate the transcription of PDX-1. The results of our experimental studies indicated that stigmasterol-3-O-β-d-glucoside (1) isolated from the fruits of A. quinata can potentially enhance insulin secretion, and might alleviate the reduction in GSIS during the development of T2DM.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jin Su Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Jurdas Sezirahiga
- College of Medicine and Health Sciences, University of Rwanda, Kigali 3286, Rwanda;
| | - Hak Cheol Kwon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 210-340, Korea;
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
4
|
Short-Term Protocols to Obtain Insulin-Producing Cells from Rat Adipose Tissue: Signaling Pathways and In Vivo Effect. Int J Mol Sci 2019; 20:ijms20102458. [PMID: 31109026 PMCID: PMC6566438 DOI: 10.3390/ijms20102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Studies using mesenchymal stromal cells (MSCs) as a source of insulin-secreting cells (IPCs) are a promising path in the pursuit for diabetes therapy. Here, we investigate three short-term differentiation protocols in order to generate IPCs from autologous adipose-derived stromal cells (ADSCs) with an expressive insulin-secreting profile in vitro and in vivo, as well as the signaling pathways involved in the chosen differentiation protocols. We extracted and cultured ADSCs and differentiated them into IPCs, using three different protocols with different inductors. Afterwards, the secretory profile was analyzed and IPCs differentiated in exendin-4/activin A medium, which presented the best secretory profile, was implanted in the kidney subcapsular region of diabetic rats. All protocols induced the differentiation, but media supplemented with exendin-4/activin A or resveratrol induced the expression and secretion of insulin more efficiently, and only the exendin-4/activin-A-supplemented medium generated an insulin secretion profile more like β-cells, in response to glucose. The PI3K/Akt pathway seems to play a negative role in IPC differentiation; however, the differentiation of ADSCs with exendin-4/activin A positively modulated the p38/MAPK pathway. Resveratrol medium activated the Jak/STAT3 pathway and generated IPCs apparently less sensitive to insulin and insulin-like receptors. Finally, the implant of IPCs with the best secretory behavior caused a decrease in hyperglycemia after one-week implantation in diabetic rats. Our data provide further information regarding the generation of IPCs from ADSCs and strengthen evidence to support the use of MSCs in regenerative medicine, specially the use of exendin-4/activin A to produce rapid and effectively IPCs with significant in vivo effects.
Collapse
|
5
|
Ramdas M, Sharma S, Kaul D, Bhatia A. Possible role of miR-2909 RNomics in arsenic mediated pancreatic β-cell dysfunction. J Trace Elem Med Biol 2018; 50:263-267. [PMID: 30262289 DOI: 10.1016/j.jtemb.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Chronic exposure of humans to inorganic arsenic as a potential risk for the incidence of diabetes has received wide attention. However, the biological mechanism through which arsenic plays a role in the development of diabetes is still being evaluated. One of the hallmark of diabetes is the β-cell dysfunction followed by the changes in the insulin secretion. Pancreatic duodenal homeobox 1 (PDX1) has been widely recognized to play crucial role in the β-cell development, survival and its regulation of insulin gene expression. Many of the arsenic mediated cellular affects have been shown to be regulated by miR-2909 in vitro. Our present study provides evidence to reveal that arsenic affects miR-2909 expression in the pancreatic β-cell and this novel miRNA regulates PDX1 transcriptional expression indirectly through genes coding for c-Jun, MafA, PI3K and directly at the translational level by targeting the PDX1 mRNA. We provide further evidence for this miR-2909 RNomics in pancreatic tissue obtained from NOD mice where the expression of miR-2909 was high compared to the control mice. Keeping in view the fact that arsenic is known to cause β-cell dysfunction and most of the cellular effects of arsenic have been shown to be mediated through miR-2909 RNomics, our study revealed that arsenic employs miR-2909 (at low doses) and c-Jun (at high doses) to down regulate PDX1 in order to cause β-cell dysfunction leading to diabetic state.
Collapse
Affiliation(s)
- M Ramdas
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - S Sharma
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - D Kaul
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - A Bhatia
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
6
|
Naito Y, Yoshikawa Y, Shintani M, Kamoshida S, Kajiwara N, Yasui H. Anti-hyperglycemic Effect of Long-Term Bis(hinokitiolato)zinc Complex ([Zn(hkt) 2]) Ingestion on Insulin Resistance and Pancreatic Islet Cells Protection in Type 2 Diabetic KK-A y Mice. Biol Pharm Bull 2017; 40:318-326. [PMID: 28250273 DOI: 10.1248/bpb.b16-00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc (Zn) is a trace element with anti-diabetes mellitus (anti-DM) effects. Zn complexes exhibit stronger insulin-like activity than Zn ions. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) was recently reported to be a potent anti-DM candidate. We examined the effects of [Zn(hkt)2] on insulin resistance and pancreatic islet cells through in vivo long-term ingestion studies. In an in vivo study, we performed 4-month long-term [Zn(hkt)2] administration experiments in KK-Ay mice as a type 2 DM animal model. Ingestion of [Zn(hkt)2] resulted in lower blood glucose levels compared with the non-treated KK-Ay mice (control group). Additionally, [Zn(hkt)2] treatment decreased plasma insulin concentration compared with that of the non-treated KK-Ay group. [Zn(hkt)2] treatment resulted in a significant suppression of islet cell enlargement and a significantly decreased number of insulin-positive cells compared with the non-treated KK-Ay control group. The [Zn(hkt)2] treatment group showed the increasing tendency in the amount of Zn levels in peripheral organs; liver, muscle, adipose, and pancreas, compared with the non-treated KK-Ay control group. However, the Zn level in the pancreas of the [Zn(hkt)2] treatment group did not show the significant increase compared with the non-treated KK-Ay control group. This accumulation of Zn in pancreas suggested that [Zn(hkt)2] mainly effects on the peripheral tissue, and [Zn(hkt)2] has the less effect on the pancreas directly. Thus, we concluded that [Zn(hkt)2] exerted the main effect on peripheral organs by ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yuki Naito
- Department of Analytical & Bioinorganic Chemistry, Division of Analytical & Physical Sciences, Kyoto Pharmaceutical University
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Pezzolla D, López-Beas J, Lachaud CC, Domínguez-Rodríguez A, Smani T, Hmadcha A, Soria B. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells. PLoS One 2015; 10:e0119904. [PMID: 25774684 PMCID: PMC4361612 DOI: 10.1371/journal.pone.0119904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.
Collapse
Affiliation(s)
- Daniela Pezzolla
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Javier López-Beas
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Christian C. Lachaud
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
| | | | - Tarik Smani
- Cardiovascular Pathophysiology, Institute of Biomedicine of Seville (IBIS), Sevilla, Spain
| | - Abdelkrim Hmadcha
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
- * E-mail:
| | - Bernat Soria
- Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)—Fundación Progreso y Salud (FPS), Sevilla, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| |
Collapse
|
9
|
Abstract
Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the transforming growth factor beta (TGFβ) pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects.
Collapse
Affiliation(s)
- T. Cohen
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | | | - F. Levine
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA,Address correspondence to: Dr. Fred Levine, Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Takahashi H, Okamura D, Starr ME, Saito H, Evers BM. Age-dependent reduction of the PI3K regulatory subunit p85α suppresses pancreatic acinar cell proliferation. Aging Cell 2012; 11:305-14. [PMID: 22212451 DOI: 10.1111/j.1474-9726.2011.00787.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
11
|
Zhao Z, Choi J, Zhao C, Ma ZA. FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57(KIP2). J Biol Chem 2011; 287:5562-73. [PMID: 22194608 DOI: 10.1074/jbc.m111.305359] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Loss of insulin-producing β-cell mass is a hallmark of type 2 diabetes in humans and diabetic db/db mice. Pancreatic β-cells can modulate their mass in response to a variety of physiological and pathophysiological cues. There are currently few effective therapeutic approaches targeting β-cell regeneration although some anti-diabetic drugs may positively affect β-cell mass. Here we show that oral administration of FTY720, a sphingosine 1-phosphate (S1P) receptor modulator, to db/db mice normalizes fasting blood glucose by increasing β-cell mass and blood insulin levels without affecting insulin sensitivity. Fasting blood glucose remained normal in the mice even after the drug was withdrawn after 23 weeks of treatment. The islet area in the pancreases of the FTY720-treated db/db mice was more than 2-fold larger than that of the untreated mice after 6 weeks of treatment. Furthermore, BrdU incorporation assays and Ki67 staining demonstrated cell proliferation in the islets and pancreatic duct areas. Finally, islets from the treated mice exhibited a significant decrease in the level of cyclin-dependent kinase inhibitor p57(KIP2) and an increase in the level of cyclin D3 as compared with those of untreated mice, which could be reversed by the inhibition of phosphatidylinositol 3-kinase (PI3K). Our findings reveal a novel network that controls β-cell regeneration in the obesity-diabetes setting by regulating cyclin D3 and p57(KIP2) expression through the S1P signaling pathway. Therapeutic strategies targeting this network may promote in vivo regeneration of β-cells in patients and prevent and/or cure type 2 diabetes.
Collapse
Affiliation(s)
- Zhengshan Zhao
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
12
|
Liu SH, Patel S, Gingras MC, Nemunaitis J, Zhou G, Chen C, Li M, Fisher W, Gibbs R, Brunicardi FC. PDX-1: demonstration of oncogenic properties in pancreatic cancer. Cancer 2010; 117:723-33. [PMID: 20886630 DOI: 10.1002/cncr.25629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/06/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pancreatic-duodenal homeobox 1 (PDX-1) is a transcription factor that regulates embryologic pancreas development and insulin expression in the adult islet; however, it is overexpressed in many types of cancer, including pancreatic cancer. The purpose of this study was to investigate the role of PDX-1 in tumorigenesis in human cells. METHODS In vitro cell proliferation, invasion, and transformation were performed in human embryonic kidney cell line (HEK 293), pancreatic cancer cell line MIA PaCa2, and human pancreatic ductal epithelial (HPDE) cells transiently or stably expressing PDX-1 or green fluorescent protein (GFP) PDX-1, with or without cotransfection of PDX-1 short hairpin RNA (shRNA). In vivo tumor formation was carried out in severe combined immunodeficiency (SCID) mice with subcutaneous injection of HEK 293 and MIA PaCa2 stably transfected cells. Cell cycle was analyzed by Western blot or immunostaining. Microarray of RNA from pancreatic adenocarcinoma cells with and without PDX-1 shRNA was performed and analyzed. RESULTS Transient and stable expressing PDX-1 significantly increased cell proliferation and invasion in HEK 293, human pancreatic ductal epithelial (HPDE), and MIA PaCa2 cells versus controls (P < .05), human PDX-1 shRNA reversed these effects. Expression of PDX-1 significantly increased colony formation in HEK 293, HPDE, and MIA PaCa2 cells versus controls in vitro (P < .05). PDX-1 promoted HEK 293 and MIA PaCa2 tumor formation in SCID mice as compared with that of control (P < .05). PDX-1 overexpression disrupted cell cycles proteins. PDX-1 expression was confirmed by Western blot and tracked by viewing of GFP-PDX-1 expression. Microarray data support an oncogenic role of PDX-1 in pancreas cancer cells. CONCLUSIONS PDX-1 induced increased cell proliferation, invasion, and colony formation in vitro, and resulted in markedly increased HEK 293 and MIA PaCa2 tumor formation in SCID mice. These data suggest that PDX-1 is a potential oncogene that regulates tumorigenesis.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Uzan B, Figeac F, Portha B, Movassat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One 2009; 4:e4734. [PMID: 19266047 PMCID: PMC2649538 DOI: 10.1371/journal.pone.0004734] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 01/13/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Keratinocyte growth factor (KGF; palifermin) is a growth factor with a high degree of specificity for epithelial cells. KGF is an important effector of epithelial growth and tissue homeostasis in various organs including the pancreas. Here we investigated the intracellular signaling pathways involved in the mediation of pancreatic ductal cell proliferation and differentiation induced by exogenous KGF during beta-cell regeneration in diabetic rat. METHODOLOGY AND RESULTS In vitro and in vivo duct cell proliferation was measured by BrdU incorporation assay. The implication of MAPK-ERK1/2 in the mediation of KGF-induced cell proliferation was determined by inactivation of this pathway, using the pharmacological inhibitor or antisense morpholino-oligonucleotides against MEK1. In vivo KGF-induced duct cell differentiation was assessed by the immunolocalization of PDX1 and Glut2 in ductal cells and the implication of PI3K/AKT in this process was investigated. We showed that KGF exerted a potent mitogenic effect on ductal cells. Both in vitro and in vivo, its effect on cell proliferation was mediated through the activation of ERK1/2 as evidenced by the abolition of duct cell proliferation in the context of MEK/ERK inactivation. In vivo, KGF treatment triggered ductal cell differentiation as revealed by the expression of PDX1 and Glut2 in a subpopulation of ductal cells via a PI3K-dependent mechanism. CONCLUSION Here we show that KGF promotes beta-cell regeneration by stimulating duct cell proliferation in vivo. Moreover, we demonstrated for the first time that KGF directly induces the expression of PDX1 in some ductal cells thus inducing beta-cell neogenesis. We further explored the molecular mechanisms involved in these processes and showed that the effects of KGF on duct cell proliferation are mediated by the MEK-ERK1/2 pathway, while the KGF-induced cell differentiation is mediated by the PI3K/AKT pathway. These findings might have important implications for the in vivo induction of duct-to-beta cell neogenesis in patients with beta-cell deficiency.
Collapse
Affiliation(s)
- Benjamin Uzan
- Laboratory of Pathophysiology of Nutrition, Paris Diderot- Paris 7 University, Department of Life Science, CNRS/UMR 7059, Paris, France
| | - Florence Figeac
- Laboratory of Pathophysiology of Nutrition, Paris Diderot- Paris 7 University, Department of Life Science, CNRS/UMR 7059, Paris, France
| | - Bernard Portha
- Laboratory of Pathophysiology of Nutrition, Paris Diderot- Paris 7 University, Department of Life Science, CNRS/UMR 7059, Paris, France
| | - Jamileh Movassat
- Laboratory of Pathophysiology of Nutrition, Paris Diderot- Paris 7 University, Department of Life Science, CNRS/UMR 7059, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Regulation of pancreatic duct cell differentiation by phosphatidylinositol-3 kinase. Biochem Biophys Res Commun 2008; 370:33-7. [PMID: 18339306 DOI: 10.1016/j.bbrc.2008.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 01/19/2023]
Abstract
We have previously demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling is essential for pancreatic regeneration after partial pancreatectomy in mice. In the present study, we examined a role of PI3K/Akt signaling for pancreatic duct cell differentiation into insulin-producing cells. Epithelial-like cells were isolated from mouse pancreas and confirmed to be positive for a duct cell marker cytokeratin-20 (CK-20) but negative for insulin. Incubation of these cells with epidermal growth factor, exhibited a gradual increase in Akt phosphorylation and expression of pancreatic duodenal homeobox-1 (PDX-1), a regulator of beta-cell differentiation. Three weeks later, these CK-20-positive cells were noted to express insulin as determined by immunofluorescent double-staining. Akt phosphorylation, PDX-1 expression, and insulin production were effectively reduced by blocking the PI3K/Akt pathway using siRNA to the p85alpha regulatory subunit of PI3K. Our results demonstrate that PI3K/Akt activation has a critical role for pancreatic duct cell differentiation into insulin-producing cells.
Collapse
|