1
|
Liu X, Qian D, Liu H, Abbruzzese JL, Luo S, Walsh KM, Wei Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol Carcinog 2020; 59:930-939. [PMID: 32367578 PMCID: PMC7592725 DOI: 10.1002/mc.23208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Because the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Danwen Qian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - James L. Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M. Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
3
|
Wang Y, Chen Y, Jiang H, Tang W, Kang M, Liu T, Guo Z, Ma Z. Peroxisome proliferator-activated receptor gamma (PPARG) rs1801282 C>G polymorphism is associated with cancer susceptibility in asians: an updated meta-analysis. Int J Clin Exp Med 2015; 8:12661-12673. [PMID: 26550180 PMCID: PMC4612865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) is related to inflammation and plays an important role in the development of cancer. PPARG rs1801282 C>G polymorphism might influence the risk of cancer by regulating production of PPARG gene. Hence, a comprehensive meta-analysis was conducted to explore the association of PPARG rs1801282 C>G polymorphism with cancer susceptibility. An extensive search of PubMed and Embase databases for all relevant publications was carried out. A total of 38 publications with 16,844 cancer cases and 23,736 controls for PPARG rs1801282 C>G polymorphism were recruited in our study. Our results indicated that PPARG rs1801282 C>G variants were associated with an increased cancer risk in Asian populations and gastric cancer. In summary, the findings suggest that PPARG rs1801282 C>G polymorphism may play a crucial role in malignant transformation and the development of cancer.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous PrefectureJinghong, Yunnan Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Provincial Cancer HospitalFuzhou, Fujian Province, China
| | - Heping Jiang
- Department of Emergency, Affiliated Jintan People’s Hospital of Jiangsu UniversityJintan, China
| | - Weifeng Tang
- Department of Thoracic Surgery, The Union Clinical Medical College of Fujian Medical UniversityFuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, The Union Clinical Medical College of Fujian Medical UniversityFuzhou, Fujian Province, China
| | - Tianyun Liu
- Department of Cardiology, The Second Clinical Medical College of Fujian Medical UniversityQuanzhou, Fujian Province, China
| | - Zengqing Guo
- Department of Medical Oncology, Fujian Provincial Cancer HospitalFuzhou, Fujian Province, China
| | - Zhiqiang Ma
- Department of Cardiothoracic Surgery, The People’s Hospital of Xishuangbanna Dai Autonomous PrefectureJinghong, Yunnan Province, China
| |
Collapse
|
4
|
Austin MA, Kuo E, Van Den Eeden SK, Mandelson MT, Brentnall TA, Kamineni A, Potter JD. Family history of diabetes and pancreatic cancer as risk factors for pancreatic cancer: the PACIFIC study. Cancer Epidemiol Biomarkers Prev 2013; 22:1913-7. [PMID: 23966578 PMCID: PMC3808252 DOI: 10.1158/1055-9965.epi-13-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic association studies have identified more than a dozen genes associated with risk of pancreatic cancer. Given this genetic heterogeneity, family history can be useful for identifying individuals at high risk for this disease. The goal of this analysis was to evaluate associations of family history of diabetes and family history of pancreatic cancer with risk of pancreatic cancer. PACIFIC is a case-control study based on two large health plans. Cases were diagnosed with pancreatic ductal adenocarcinoma (PDA) and controls were selected from the health plan enrollment databases and frequency matched to cases. Family history data were collected using an interviewer-administered questionnaire and were available on 654 cases and 697 controls. Logistic regression was used for the association analyses. First-degree relative history of diabetes was statistically significantly associated with increased risk of PDA [OR, 1.37; 95% confidence interval (CI), 1.10-1.71]. The highest risk of PDA was observed for an offspring with diabetes (OR, 1.95; 95% CI, 1.23-3.09). In addition, history of pancreatic cancer increased risk for PDA with an OR of 2.79 (95% CI, 1.44-4.08) for any first-degree relative history of pancreatic cancer. This population-based analysis showed that family history of diabetes was associated with increased risk of PDA and confirmed previous studies showing that first-degree family history of pancreatic cancer is associated with PDA. These results support the need for ongoing studies of genetic influences on pancreatic cancer in large samples and investigations of possible pleiotropic genetic effects on diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Melissa A Austin
- Authors' Affiliations: Departments of Epidemiology and Gastroenterology, University of Washington; Group Health Research Institute and Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California; and Centre for Public Health Research, Massey University, Wellington, New Zealand
| | | | | | | | | | | | | |
Collapse
|
5
|
Momi N, Kaur S, Ponnusamy MP, Kumar S, Wittel UA, Batra SK. Interplay between smoking-induced genotoxicity and altered signaling in pancreatic carcinogenesis. Carcinogenesis 2012; 33:1617-28. [PMID: 22623649 DOI: 10.1093/carcin/bgs186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continuous research efforts directed at early diagnosis and treatment of pancreatic cancer (PC), the status of patients affected by this deadly malignancy remains dismal. Its notoriety with regard to lack of early diagnosis and resistance to the current chemotherapeutics is due to accumulating signaling abnormalities. Hoarding experimental and epidemiological evidences have established a direct correlation between cigarette smoking and PC risk. The cancer initiating/promoting nature of cigarette smoke can be attributed to its various constituents including nicotine, which is the major psychoactive component, and several other toxic constituents, such as nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and polycyclic aromatic hydrocarbons. These predominant smoke-constituents initiate a series of oncogenic events facilitating epigenetic alterations, self-sufficiency in growth signals, evasion of apoptosis, sustained angiogenesis, and metastasis. A better understanding of the molecular mechanisms underpinning these events is crucial for the prevention and therapeutic intervention against PC. This review presents various interconnected signal transduction cascades, the smoking-mediated genotoxicity, and genetic polymorphisms influencing the susceptibility for smoking-mediated PC development by modulating pivotal biological aspects such as cell defense/tumor suppression, inflammation, DNA repair, as well as tobacco-carcinogen metabolization. Additionally, it provides a large perspective toward tumor biology and the therapeutic approaches against PC by targeting one or several steps of smoking-mediated signaling cascades.
Collapse
Affiliation(s)
- Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | |
Collapse
|
6
|
Genes related to diabetes may be associated with pancreatic cancer in a population-based case-control study in Minnesota. Pancreas 2012; 41:50-3. [PMID: 22015968 PMCID: PMC3241825 DOI: 10.1097/mpa.0b013e3182247625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Type 2 diabetes is associated with increased pancreatic cancer risk; however, the nature of this relationship is not clear. We examined the link between 10 diabetes-related single-nucleotide polymorphisms and pancreatic cancer in a case-control study conducted in 1994 to 1998. METHODS Cases (n = 162) were ascertained from hospitals in the Twin Cities and Mayo Clinic, Minn. Controls (n = 540) from the general population were frequency matched by age, sex, and race. Unconditional logistic regression provided odds ratios of pancreatic cancer and 95% confidence intervals (95% CIs). RESULTS In a multivariate-adjusted model, a significant association was observed only for rs780094 in the glucokinase regulator (GCKR) gene: odds ratios for pancreatic cancer were 1.00 for TT, 1.35 (95% CI, 0.71-2.58) for CT, and 2.14 (95% CI, 1.12-4.08) for CC genotypes (P trend = 0.01) and did not change after the adjustment for diabetes. CONCLUSIONS This study provides the first evidence that GCKR rs780094, a single-nucleotide polymorphism related to diabetes, may be associated with pancreatic cancer risk. Although the results from this analysis are preliminary, there is a biologic plausibility for such an association.
Collapse
|
7
|
Pierce BL, Austin MA, Ahsan H. Association study of type 2 diabetes genetic susceptibility variants and risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes Control 2011; 22:877-83. [PMID: 21445555 DOI: 10.1007/s10552-011-9760-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/12/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examine associations between recently identified common type 2 diabetes (T2D) susceptibility genetic variants and pancreatic cancer risk. METHODS Using data on individuals of European ancestry from the Cancer Genetic Markers of Susceptibility PanScan-I study (1,763 pancreatic cancer cases and 1,802 controls), we tested associations for 37 T2D susceptibility variants with pancreatic cancer risk. Associations with pancreatic cancer were also tested for three composite T2D susceptibility measures, incorporating data on all 37 variants, and for ten additional variants related to T2D-related phenotypes, including fasting glucose and beta-cell function. RESULTS Of the 37 T2D risk alleles, two showed nominally significant positive associations with pancreatic cancer risk (FTO rs8050136 per-allele OR = 1.12; CI: 1.02-1.23; MTNR1B rs1387153 OR = 1.11; CI: 1.00-1.23) and one showed an inverse association (BCL11A rs243021 OR = 0.88; CI: 0.80-0.97). The composite T2D susceptibility measures were not associated with pancreatic cancer. The glucose-raising allele of MADD rs11039149 was associated with increased risk of pancreatic cancer (OR = 1.14; CI: 1.03-1.27). CONCLUSIONS Overall, these results do not provide strong evidence that common variants underling T2D or related phenotypes also affect pancreatic cancer risk; however, associations for FTO, MTNR1B, BCL11A, and MADD variants warrant further investigation in larger studies. Hypothesis-driven analyses of existing genome-wide genetic data can be cost-efficient and promising approaches for investigating genetic susceptibility to complex diseases.
Collapse
Affiliation(s)
- Brandon L Pierce
- Department of Health Studies and Comprehensive Cancer Center, The University of Chicago, IL, 60637, USA.
| | | | | |
Collapse
|
8
|
Tang H, Dong X, Hassan M, Abbruzzese JL, Li D. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2011; 20:779-92. [PMID: 21357378 DOI: 10.1158/1055-9965.epi-10-0845] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The genetic factors predisposing individuals with obesity or diabetes to pancreatic cancer have not been identified. AIMS To investigate the hypothesis that obesity- and diabetes-related genes modify the risk of pancreatic cancer. METHODS We genotyped 15 single nucleotide polymorphisms of fat mass and obesity-associated (FTO), peroxisome proliferators-activated receptor gamma (PPARγ), nuclear receptor family 5 member 2 (NR5A2), AMPK, and ADIPOQ genes in 1,070 patients with pancreatic cancer and 1,175 cancer-free controls. Information on risk factors was collected by personal interview. Adjusted ORs (AOR) and 95% CIs were calculated using unconditional logistic regression. RESULTS The PPARγ P12A GG genotype was inversely associated with risk of pancreatic cancer (AOR, 0.21; 95% CI, 0.07-0.62). Three NR5A2 variants that were previously identified in a genome-wide association study were significantly associated with reduced risk of pancreatic cancer, AORs ranging from 0.57 to 0.79. Two FTO gene variants and one ADIPOQ variant were differentially associated with pancreatic cancer according to levels of body mass index (BMI; P(interaction) = 0.0001, 0.0015, and 0.03). For example, the AOR (95% CI) for FTO IVS1-2777AC/AA genotype was 0.72 (0.55-0.96) and 1.54 (1.14-2.09) in participants with a BMI of less than 25 or 25 kg/m(2) or more, respectively. We observed no significant association between AMPK genotype and pancreatic cancer and no genotype interactions with diabetes or smoking. CONCLUSION Our findings suggest the PPARγ P12A GG genotype and NR5A2 variants may reduce the risk for pancreatic cancer. A positive association of FTO and ADIPOQ gene variants with pancreatic cancer may be limited to persons who are overweight. IMPACT The discovery of genetic factors modifying the risk of pancreatic cancer may help to identify high-risk individuals for prevention efforts.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
9
|
Tang H, Dong X, Hassan M, Abbruzzese JL, Li D, Askari F, Su GL, Lok AS, Marrero JA. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2011. [PMID: 21357378 DOI: 10.1158/1055-9965] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The genetic factors predisposing individuals with obesity or diabetes to pancreatic cancer have not been identified. AIMS To investigate the hypothesis that obesity- and diabetes-related genes modify the risk of pancreatic cancer. METHODS We genotyped 15 single nucleotide polymorphisms of fat mass and obesity-associated (FTO), peroxisome proliferators-activated receptor gamma (PPARγ), nuclear receptor family 5 member 2 (NR5A2), AMPK, and ADIPOQ genes in 1,070 patients with pancreatic cancer and 1,175 cancer-free controls. Information on risk factors was collected by personal interview. Adjusted ORs (AOR) and 95% CIs were calculated using unconditional logistic regression. RESULTS The PPARγ P12A GG genotype was inversely associated with risk of pancreatic cancer (AOR, 0.21; 95% CI, 0.07-0.62). Three NR5A2 variants that were previously identified in a genome-wide association study were significantly associated with reduced risk of pancreatic cancer, AORs ranging from 0.57 to 0.79. Two FTO gene variants and one ADIPOQ variant were differentially associated with pancreatic cancer according to levels of body mass index (BMI; P(interaction) = 0.0001, 0.0015, and 0.03). For example, the AOR (95% CI) for FTO IVS1-2777AC/AA genotype was 0.72 (0.55-0.96) and 1.54 (1.14-2.09) in participants with a BMI of less than 25 or 25 kg/m(2) or more, respectively. We observed no significant association between AMPK genotype and pancreatic cancer and no genotype interactions with diabetes or smoking. CONCLUSION Our findings suggest the PPARγ P12A GG genotype and NR5A2 variants may reduce the risk for pancreatic cancer. A positive association of FTO and ADIPOQ gene variants with pancreatic cancer may be limited to persons who are overweight. IMPACT The discovery of genetic factors modifying the risk of pancreatic cancer may help to identify high-risk individuals for prevention efforts.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fong PY, Fesinmeyer MD, White E, Farin FM, Srinouanprachanh S, Afsharinejad Z, Mandelson MT, Brentnall TA, Barnett MJ, Goodman GE, Austin MA. Association of diabetes susceptibility gene calpain-10 with pancreatic cancer among smokers. J Gastrointest Cancer 2011; 41:203-8. [PMID: 20178008 DOI: 10.1007/s12029-010-9130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this study was to test the association between calpain-10 (CAPN10), a diabetes susceptibility gene, with risk of pancreatic cancer (PC). METHODS DNA samples from 83 incident exocrine PC cases and 166 controls, all of whom were smokers, were genotyped for four markers of CAPN10 in a nested case-control study based on the Beta-Carotene and Retinol Efficacy Trial (CARET), a randomized chemoprevention trial of subjects at high risk of lung cancer. Controls were matched on sex, race, age, CARET intervention arm, duration of exposure to asbestos, and smoking history. Conditional logistic regression was used for statistical analyses. RESULTS The minor allele of SNP-43 (rs3792267) in intron 3 was associated with increased risk of PC with an odds ratio of 1.57 (95%CI 1.03-2.38, p = 0.035) per allele. The three markers of the highest risk haplotype had an odds ratio of 1.98 (95%CI 1.12-3.49, p = 0.019) for risk of PC compared to the most common haplotype. There was no evidence of interaction between either of these associations by diabetes status. CONCLUSION These results suggest that variation in CAPN10 may be associated with increased risk of PC among smokers. Thus, studies of genes associated with diabetes risk in PC are warranted in a larger population.
Collapse
Affiliation(s)
- Pui-yee Fong
- Institute for Public Health Genetics, University of Washington, Box 357236, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|