1
|
Ahmed HH, Aglan HA, Beherei HH, Mabrouk M, Mahmoud NS. The promising role of hypoxia-resistant insulin-producing cells in ameliorating diabetes mellitus in vivo. Future Sci OA 2022; 8:FSO811. [PMID: 36248064 PMCID: PMC9540411 DOI: 10.2144/fsoa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. Materials & methods: Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. Results: MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. Conclusion: The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes. Transplantation of cells that can release insulin have been reported as an alternate method to islet transfer for curing diabetes; however, the main difficulty facing the quality of the pancreatic cells is the deficiency of oxygen. Thus, this study was done to discover a new curing method for diabetes by producing cells that can release insulin and could survive under low oxygen circumstances, and assessing their healing ability against diabetes in rats.
Collapse
Affiliation(s)
- Hanaa H Ahmed
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics & Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Nadia S Mahmoud
- Hormones Department, Medical Research & Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
2
|
Faleo G, Russ HA, Wisel S, Parent AV, Nguyen V, Nair GG, Freise JE, Villanueva KE, Szot GL, Hebrok M, Tang Q. Mitigating Ischemic Injury of Stem Cell-Derived Insulin-Producing Cells after Transplant. Stem Cell Reports 2017; 9:807-819. [PMID: 28803916 PMCID: PMC5599226 DOI: 10.1016/j.stemcr.2017.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
The advent of large-scale in vitro differentiation of human stem cell-derived insulin-producing cells (SCIPC) has brought us closer to treating diabetes using stem cell technology. However, decades of experiences from islet transplantation show that ischemia-induced islet cell death after transplant severely limits the efficacy of the therapy. It is unclear to what extent human SCIPC are susceptible to ischemia. In this study, we show that more than half of SCIPC die shortly after transplantation. Nutrient deprivation and hypoxia acted synergistically to kill SCIPC in vitro. Amino acid supplementation rescued SCIPC from nutrient deprivation, likely by providing cellular energy. Generating SCIPC under physiological oxygen tension of 5% conferred hypoxia resistance without affecting their differentiation or function. A two-pronged strategy of physiological oxygen acclimatization during differentiation and amino acid supplementation during transplantation significantly improved SCIPC survival after transplant. Stem cell-derived insulin-producing cells (SCIPC) are susceptible to ischemic injury Amino acid supplementation prevents nutrient-deprivation-induced SCIPC death Generation of SCIPC at physiological oxygen levels protects them against hypoxia Both strategies combined preserve SCIPC graft viability in vivo upon transplant
Collapse
Affiliation(s)
- Gaetano Faleo
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven Wisel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Audrey V Parent
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gopika G Nair
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jonathan E Freise
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Karina E Villanueva
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gregory L Szot
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Francis N, Moore M, Asan SG, Rutter GA, Burns C. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm. Gene Expr Patterns 2015; 19:70-82. [PMID: 26277621 PMCID: PMC6101203 DOI: 10.1016/j.gep.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
Abstract
Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential to treat type 1 diabetes through cell replacement therapy. However, the protocols used to generate insulin-expressing cells in vitro frequently result in cells which have an immature phenotype and are functionally restricted. MicroRNAs (miRNAs) are now known to be important in cell fate specification, and a unique miRNA signature characterises pancreatic development at the definitive endoderm stage. Several studies have described differences in miRNA expression between ESCs and iPSCs. Here we have used microarray analysis both to identify miRNAs up- or down-regulated upon endoderm formation, and also miRNAs differentially expressed between ESCs and iPSCs. Several miRNAs fulfilling both these criteria were identified, suggesting that differences in the expression of these miRNAs may affect the ability of pluripotent stem cells to differentiate into definitive endoderm. The expression of these miRNAs was validated by qRT-PCR, and the relationship between one of these miRNAs, miR-151a-5p, and its predicted target gene, SOX17, was investigated by luciferase assay, and suggested an interaction between miR-151a-5p and this key transcription factor. In conclusion, these findings demonstrate a unique miRNA expression pattern for definitive endoderm derived from both embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Natalie Francis
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, ICTEM, du Cane Road, Imperial College London, W12 0MN, UK
| | - Melanie Moore
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Simona G Asan
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, ICTEM, du Cane Road, Imperial College London, W12 0MN, UK
| | - Chris Burns
- Endocrinology Section, Biotherapeutics Department, National Institute of Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK.
| |
Collapse
|
4
|
Naujok O, Lenzen S. A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Rev Rep 2012; 8:779-91. [PMID: 22529013 DOI: 10.1007/s12015-012-9362-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differentiation of embryonic stem cells (ESCs) into insulin-producing cells for cell replacement therapy of diabetes mellitus comprises the stepwise recapitulation of in vivo developmental stages of pancreatic organogenesis in an in vitro differentiation protocol. The chemical compounds IDE-1 and (-)-indolactam-V can be used to direct mouse and human ESCs through these stages to form definitive endoderm via an intermediate mesendodermal stage and finally into pancreatic endoderm. Cells of the pancreatic endoderm express the PDX1 transcription factor and contribute to all pancreatic cell types upon further in vitro or in vivo differentiation. Even though this differentiation approach is highly effective and reproducible, it generates heterogeneous populations containing PDX1-expressing pancreatic progenitors amongst other cell types. Thus, a technique to separate PDX1-expressing cells from this mixture is very desirable. Recently it has been reported that PDX1-positive pancreatic progenitors, derived from human embryonic stem cells, express the surface marker CD24. Therefore were subjected mouse and human ESCs to a small molecule differentiation approach and the expression of the surface marker CD24 was monitored in undifferentiated cells, cells committed to the definitive endoderm and cells reminiscent of the pancreatic endoderm. We observed that both mouse and human ESCs expressed CD24 in the pluripotent state, during the whole process of endoderm formation and upon further differentiation towards pancreatic endoderm. Thus CD24 is not a suitable cell surface marker for identification of PDX1-positive progenitor cells.
Collapse
Affiliation(s)
- Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
5
|
Insulin-producing surrogate β-cells from embryonic stem cells: are we there yet? Mol Ther 2011; 19:1759-68. [PMID: 21829172 DOI: 10.1038/mt.2011.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Embryonic stem cells (ESCs) harbor the potential to generate every cell type of the body by differentiation. The use of hESCs holds great promise for potential cell replacement therapies for degenerative diseases including diabetes mellitus. The recently discovered induced pluripotent stem cells (iPSCs) exhibit immense potential for regenerative medicine as they allow the generation of autologous cells tailored to the patients' immune system. Research for insulin-producing surrogate cells from ESCs has yielded highly controversial results, because many steps and factors in the differentiation process are currently still unknown. Thus, there is no consensus on common standard protocols. The protocols presently used established the differentiation from pluripotent cells toward pancreatic progenitor cells. However, none of the differentiation protocols reported to date have generated by exclusive in vitro differentiation sufficient numbers of insulin-producing cells meeting all essential criteria of a β-cell. The cells often lack the crucial function of regulated insulin secretion upon glucose stimulation. This review focuses on past and current approaches to the generation of insulin-producing cells from pluripotent sources, such as ESCs and iPSCs, and critically discusses the hurdles to be taken before insulin-secreting surrogate cells derived from these stem cells will be of clinical use in humans.
Collapse
|
6
|
Abstract
BACKGROUND Diabetes can be treated by β-cell replacement therapy but the supply of graft material from human donors is too limited to make a significant clinical impact. Substitute β-cells generated from stem cell populations offer a potential source for the large numbers of cells required. SOURCES OF DATA Primary peer-reviewed reports of experimental studies. AREAS OF AGREEMENT Embryonic stem cells and/or induced pluripotent stem (iPS) cells are currently the most promising starting populations from which to generate large numbers of β-cells. Differentiation protocols that recapitulate in vivo development generate insulin-expressing cells in vitro. AREAS OF CONTROVERSY Differentiation outcomes may depend on the source of the initial pluripotent cells. The insulin-expressing cells are not fully functional. In vivo maturation is inconsistent and not well understood. AREAS TIMELY FOR DEVELOPING RESEARCH Improvement of current protocols for complete in vitro differentiation to a functional β-cell phenotype. Systematic analysis to identify the most appropriate starting material. Improved purification methods to ensure safety of material for clinical transplantation.
Collapse
Affiliation(s)
- Yue Wu
- Diabetes Research Group, King's College London, London, UK
| | | | | |
Collapse
|
7
|
Wen Y, Chen B, Ildstad ST. Stem cell-based strategies for the treatment of type 1 diabetes mellitus. Expert Opin Biol Ther 2010; 11:41-53. [PMID: 21110785 DOI: 10.1517/14712598.2011.540235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD β-Cell regeneration and β-cell preservation are two promising therapeutic approaches for the management of patients with type 1 diabetes (T1D). Stem cell-based strategies to address the problems of shortage in β cells, autoimmune and alloimmune responses have become an area of intense study. AREAS COVERED IN THIS REVIEW This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. WHAT THE READER WILL GAIN A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. TAKE HOME MESSAGE Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived β-cell maturation in vivo is poorly understood.
Collapse
Affiliation(s)
- Yujie Wen
- University of Louisville, Institute for Cellular Therapeutics, Louisville, KY 40202-1760, USA
| | | | | |
Collapse
|
8
|
Matveyenko AV, Georgia S, Bhushan A, Butler PC. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 2010; 299:E713-20. [PMID: 20587750 PMCID: PMC3774125 DOI: 10.1152/ajpendo.00279.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.
Collapse
Affiliation(s)
- Aleksey V Matveyenko
- Larry L. Hillblom Islet Research Center, University of California Los Angeles, 90095-7073, USA
| | | | | | | |
Collapse
|