1
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
2
|
Kortüm F, Niceta M, Magliozzi M, Dumic Kubat K, Robertson SP, Moresco A, Dentici ML, Baban A, Leoni C, Onesimo R, Obregon MG, Digilio MC, Zampino G, Novelli A, Tartaglia M, Kutsche K. Cantú syndrome versus Zimmermann-Laband syndrome: Report of nine individuals with ABCC9 variants. Eur J Med Genet 2020; 63:103996. [PMID: 32622958 DOI: 10.1016/j.ejmg.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/17/2022]
Abstract
Cantú syndrome (CS) is a rare developmental disorder characterized by a coarse facial appearance, macrocephaly, hypertrichosis, skeletal and cardiovascular anomalies and caused by heterozygous gain-of-function variants in ABCC9 and KCNJ8, encoding subunits of heterooctameric ATP-sensitive potassium (KATP) channels. CS shows considerable clinical overlap with Zimmermann-Laband syndrome (ZLS), a rare condition with coarse facial features, hypertrichosis, gingival overgrowth, intellectual disability of variable degree, and hypoplasia or aplasia of terminal phalanges and/or nails. ZLS is caused by heterozygous gain-of-function variants in KCNH1 or KCNN3, and gain-of-function KCNK4 variants underlie the clinically similar FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth) syndrome; KCNH1, KCNN3 and KCNK4 encode potassium channels. Within our research project on ZLS, we performed targeted Sanger sequencing of ABCC9 in 15 individuals tested negative for a mutation in the ZLS-associated genes and found two individuals harboring a heterozygous pathogenic ABCC9 missense variant. Through a collaborative effort, we identified a total of nine individuals carrying a monoallelic ABCC9 variant: five sporadic patients and four members of two unrelated families. Among the six detected ABCC9 missense variants, four [p.(Pro252Leu), p.(Thr259Lys), p.(Ala1064Pro), and p.(Arg1197His)] were novel. Systematic assessment of the clinical features in the nine cases with an ABCC9 variant highlights the significant clinical overlap between ZLS and CS that includes early developmental delay, hypertrichosis, gingival overgrowth, joint laxity, and hypoplasia of terminal phalanges and nails. Gain of K+ channel activity possibly accounts for significant clinical similarities of CS, ZLS and FHEIG syndrome and defines a new subgroup of potassium channelopathies.
Collapse
Affiliation(s)
- Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Angelica Moresco
- Paediatric Hospital Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, Rome, Italy
| | - Chiara Leoni
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Roberta Onesimo
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center of Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Tommiska J, Känsäkoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, Tang C, Yuan L, Fagerholm R, Kanters JK, Lahermo P, Kaunisto M, Keski-Filppula R, Vuoristo S, Pulli K, Ebeling T, Valanne L, Sankila EM, Kivirikko S, Lääperi M, Casoni F, Giacobini P, Phan-Hug F, Buki T, Tena-Sempere M, Pitteloud N, Veijola R, Lipsanen-Nyman M, Kaunisto K, Mollard P, Andoniadou CL, Hirsch JA, Varjosalo M, Jespersen T, Raivio T. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat Commun 2017; 8:1289. [PMID: 29097701 PMCID: PMC5668380 DOI: 10.1038/s41467-017-01429-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.
Collapse
Affiliation(s)
- Johanna Tommiska
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.,Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland
| | - Johanna Känsäkoski
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Lasse Skibsbye
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kirsi Vaaralahti
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Biocenter 3, University of Helsinki, 00014, Helsinki, Finland
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Tower Wing, Guy's Campus, London, SE1 9RT, UK
| | - Chuyi Tang
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Lei Yuan
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Rainer Fagerholm
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.,Department of Obstetrics and Gynecology, HUCH, 00029, Helsinki, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, 22000, Copenhagen, Denmark.,Department of Cardiology, Herlev & Gentofte University Hospitals, University of Copenhagen, 22000, Copenhagen, Denmark
| | - Päivi Lahermo
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Sanna Vuoristo
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristiina Pulli
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital, Finland and Research Unit of Internal Medicine, University of Oulu, 90014, Oulu, Finland
| | - Leena Valanne
- Helsinki Medical Imaging Center, HUCH, 00029, Helsinki, Finland
| | | | - Sirpa Kivirikko
- Department of Clinical Genetics, HUCH, 00029, Helsinki, Finland
| | - Mitja Lääperi
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Filippo Casoni
- Inserm U1172, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, 59045, Lille, France.,University of Lille, School of Medicine, 59045, Lille, France
| | - Paolo Giacobini
- Inserm U1172, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, 59045, Lille, France.,University of Lille, School of Medicine, 59045, Lille, France
| | - Franziska Phan-Hug
- Pediatrics, Division of Pediatric Endocrinology, Diabetology and Obesity, University Hospital Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Tal Buki
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Institute of Structural Biology, 69978, Ramat Aviv, Israel
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14071, Cordoba, Spain.,Instituto Maimonides de Investigacion Biomedica (IMIBIC/HURS), 14004, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Nelly Pitteloud
- Pediatrics, Division of Pediatric Endocrinology, Diabetology and Obesity, University Hospital Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Riitta Veijola
- Department of Children and Adolescents, Oulu University Hospital, 90029, Oulu, Finland.,Department of Pediatrics, PEDEGO Research Center, Medical Research Center, University of Oulu, 90014, Oulu, Finland
| | - Marita Lipsanen-Nyman
- Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland
| | - Kari Kaunisto
- Department of Children and Adolescents, Oulu University Hospital, 90029, Oulu, Finland
| | - Patrice Mollard
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Tower Wing, Guy's Campus, London, SE1 9RT, UK.,Department of Internal Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Institute of Structural Biology, 69978, Ramat Aviv, Israel
| | - Markku Varjosalo
- Institute of Biotechnology, Biocenter 3, University of Helsinki, 00014, Helsinki, Finland
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Taneli Raivio
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland. .,Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland.
| |
Collapse
|
4
|
Lee WK, Probst S, Santoyo-Sánchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thévenod F. Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 2017; 91:3225-3245. [PMID: 28321485 DOI: 10.1007/s00204-017-1942-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
The renal proximal tubule (PT) is the major target of cadmium (Cd2+) toxicity where Cd2+ causes stress and apoptosis. Autophagy is induced by cell stress, e.g., endoplasmic reticulum (ER) stress, and may contribute to cell survival or death. The role of autophagy in Cd2+-induced nephrotoxicity remains unsettled due to contradictory results and lack of evidence for autophagic machinery damage by Cd2+. Cd2+-induced autophagy in rat kidney PT cell line NRK-52E and its role in cell death was investigated. Increased LC3-II and decreased p62 as autophagy markers indicate rapid induction of autophagic flux by Cd2+ (5-10 µM) after 1 h, accompanied by ER stress (increased p-PERK, p-eIF2α, CHOP). Cd2+ exposure exceeding 3 h results in p62/LC3-II accumulation, but diminished effect of lysosomal inhibitors (bafilomycin A1, pepstatin A +E-64d) on p62/LC3-II levels, indicating decreased autophagic flux and cargo degradation. At 24 h exposure, Cd2+ (5-25 µM) activates intrinsic apoptotic pathways (Bax/Bcl-2, PARP-1), which is not evident earlier (≤6 h) although cell viability by MTT assay is decreased. Autophagy inducer rapamycin (100 nM) does not overcome autophagy inhibition or Cd2+-induced cell viability loss. The autophagosome-lysosome fusion inhibitor liensinine (5 μM) increases CHOP and Bax/Bcl-2-dependent apoptosis by low Cd2+ stress, but not by high Cd2+. Lysosomal instability by Cd2+ (5 μM; 6 h) is indicated by increases in cellular sphingomyelin and membrane fluidity and decreases in cathepsins and LAMP1. The data suggest dual and temporal impact of Cd2+ on autophagy: Low Cd2+ stress rapidly activates autophagy counteracting damage but Cd2+ stress accrual disrupts autophagic flux and lysosomal stability, possibly resulting in lysosomal cell death.
Collapse
Affiliation(s)
- W-K Lee
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - S Probst
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - M P Santoyo-Sánchez
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
- Department of Toxicology, Cinvestav-IPN, México D.F., Mexico
| | - W Al-Hamdani
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - I Diebels
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - J-K von Sivers
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - E Kerek
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - E J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - F Thévenod
- Department of Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| |
Collapse
|