1
|
Wang H, Chen D, Li H, Fu C, Fang L, Wang R, Xu J. Bifidobacterium regulates premature infant gut metabolites, reducing serum inflammatory factors: a randomised controlled trial. Pediatr Res 2024:10.1038/s41390-024-03552-2. [PMID: 39271904 DOI: 10.1038/s41390-024-03552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Analyse the effects of Bifidobacterium BB-12 on intestinal metabolites and serum inflammatory factors in premature infants. METHODS 71 premature infants at gestational age of ≤32 weeks were randomly divided into the probiotic (n = 36) and control (n = 35) groups. Faecal and blood samples were collected from the two groups of premature infants at the 2nd and 4th week of life for intestinal metabolite detection and assessment of the level of the serum inflammatory markers TLR4, NF- κ B, IL-1β, and TNF- α. RESULTS Compared to the control group, the probiotic group contained more amino acids, these elements were enriched on multiple amino acid metabolic pathways, and the probiotic group showed significantly lower levels of the serum inflammatory markers TLR4, NF-κB, IL-1β, and TNF-α. Finally, the probiotic group showed a lower incidence of feeding intolerance. CONCLUSIONS The administration of Bifidobacterium BB-12 is associated with increasing the levels of glutamine, glutamic acid, and kynurenine in the gut of premature infants, and associated with reducing the levels of TLR4 and NF-κB in the serum, further decreasing the secretion of the pro-inflammatory factors IL-1β and TNF-α, and alleviating systemic inflammatory reactions, thereby reducing the incidence of feeding intolerance. IMPACT 1. The use of Bifidobacterium BB-12 in premature infants can increase the levels of amino acids in the intestine. 2. Increases in Bifidobacterium BB-12 may decrease the serum levels of TLR4, NF-κB, IL-1β, and TNF-α. 3. Kynurenine may improve the prognosis of preterm infants by reducing inflammation. 4. Bifidobacterium BB-12 may improve the feeding tolerance of premature infants, thus reducing the incidence of feeding intolerance.
Collapse
Affiliation(s)
- He Wang
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Dongmei Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Huamei Li
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Chunyan Fu
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Lingyu Fang
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Ruiquan Wang
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China
| | - Jinglin Xu
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Uttarwar RG, Mekonnen SA, Van Beeck W, Wang A, Finnegan P, Roberts RF, Merenstein D, Slupsky CM, Marco ML. Effects of Bifidobacterium animalis subsp. lactis BB-12 and yogurt on mice during oral antibiotic administration. Microbiol Res 2024; 286:127794. [PMID: 38852301 DOI: 10.1016/j.micres.2024.127794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Probiotics have the potential to prevent disruptions to normal gastrointestinal function caused by oral antibiotic use. In this study, we examined the capacity of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) and yogurt, separately and combined, to mitigate the effects of the antibiotic amoxicillin-clavulanate (AMC) on the gut microbiota and metabolomes of C57BL/6 J mice. Male and female mice were administered either BB-12, yogurt, BB-12 in yogurt, or saline for 10 days concurrent with the inclusion of AMC in the drinking water. Male mice exposed to AMC exhibited significant reductions (p<0.05) in body weight over the course of the study compared to sham (no AMC) controls whereas no such effects were observed for female mice. AMC administration resulted in rapid alterations to the intestinal microbiota in both sexes irrespective of BB-12 or yogurt treatment, including significant (p<0.05) losses in bacterial cell numbers and changes in microbial alpha-diversity and beta-diversity in the feces and cecal contents. The effects of AMC on the gut microbiota were observed within one day of administration and the bacterial contents continued to change over time, showing a succession marked by rapid reductions in Muribaculaceae and Lachnospiraceae and temporal increases in proportions of Acholeplasmataceae (day 1) and Streptococcaceae and Leuconostocaceae (day 5). By day 10 of AMC intake, high proportions of Gammaproteobacteria assigned as Erwiniaceae or Enterobacteriaceae (average of 63 %), were contained in the stools and were similarly enriched in the cecum. The cecal contents of mice given AMC harbored significantly reduced concentrations of (branched) short-chain fatty acids (SCFA), aspartate, and other compounds, whereas numerous metabolites, including formate, lactate, and several amino acids and amino acid derivatives were significantly enriched. Despite the extensive impact of AMC, starting at day 7 of the study, the body weights of male mice given yogurt or BB-12 (in saline) with AMC were similar to the healthy controls. BB-12 (in saline) and yogurt intake was associated with increased Streptococcaceae and both yogurt and BB-12 resulted in lower proportions of Erwiniaceae in the fecal and cecal contents. The cecal contents of mice fed BB-12 in yogurt contained levels of formate, glycine, and glutamine that were equivalent to the sham controls. These findings highlight the potential of BB-12 and yogurt to mitigate antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Ruchita G Uttarwar
- Department of Food Science & Technology, University of California, Davis, USA
| | - Solomon A Mekonnen
- Department of Food Science & Technology, University of California, Davis, USA
| | - Wannes Van Beeck
- Department of Food Science & Technology, University of California, Davis, USA
| | - Aidong Wang
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Peter Finnegan
- Department of Food Science & Technology, University of California, Davis, USA
| | | | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, USA.
| |
Collapse
|
3
|
Vizioli C, Jaime-Lara R, Daniel SG, Franks A, Diallo AF, Bittinger K, Tan TP, Merenstein DJ, Brooks B, Joseph PV, Maki KA. Administration of Bifidobacterium animalis subsp. lactis strain BB-12 ® in healthy children: characterization, functional composition, and metabolism of the gut microbiome. Front Microbiol 2023; 14:1165771. [PMID: 37333640 PMCID: PMC10275293 DOI: 10.3389/fmicb.2023.1165771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two (Streptococcus thermophilus and Lactobacillus delbrueckii; S2) vs. three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Methods Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Results Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices, except for a lower microbial diversity in the S2 + BB12 group at Day 30. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10. In the S2 + BB12 group, the abundance of several fecal metabolites increased at Day 10, including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Discussion In conclusion, there were were no significant differences in the global metagenomic or metabolomic profiles between healthy children receiving two (S2) vs. three (S2 + BB12) probiotic strains for 10 days. Nevertheless, we observed a significant increase (Day 0 to Day 10) in the relative abundance of the two and three probiotics administered in the S2 and S2 + BB12 groups, respectively, indicating the intervention had a measurable impact on the bacteria of interest in the gut microbiome. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.
Collapse
Affiliation(s)
- Carlotta Vizioli
- Department of Health and Human Services, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Rosario Jaime-Lara
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alexis Franks
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Ana F. Diallo
- Family and Community Health Nursing, School of Nursing, Institute of Inclusion, Inquiry and Innovation (iCubed), Virginia Commonwealth University, Richmond, VA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Daniel J. Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Brianna Brooks
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Paule V. Joseph
- Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
- Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, United States
| |
Collapse
|
4
|
Vizioli C, Jaime-Lara R, Daniel SG, Franks A, Diallo AF, Bittinger K, Tan TP, Merenstein DJ, Brooks B, Joseph PV, Maki KA. Administration of Bifidobacterium animalis subsp. lactis Strain BB-12 ® in Healthy Children: Characterization, Functional Composition, and Metabolism of the Gut Microbiome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.02.23285145. [PMID: 36798243 PMCID: PMC9934720 DOI: 10.1101/2023.02.02.23285145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two ( Streptococcus thermophilus and Lactobacillus delbrueckii ; S2) vs . three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt. Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed. Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10 . In the S2+BB12 group, the abundance of several fecal metabolites was reduced at Day 10 , including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.
Collapse
Affiliation(s)
- Carlotta Vizioli
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Rosario Jaime-Lara
- National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexis Franks
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Ana F. Diallo
- Institute of Inclusion, Inquiry & Innovation (iCubed), Family and Community Health Nursing, School of Nursing, Virginia Commonwealth University, Richmond, VA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC
| | - Daniel J. Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC
| | - Brianna Brooks
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Paule V. Joseph
- National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Department of Health and Human Services, Bethesda, MD,National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Katherine A. Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, 20814
| |
Collapse
|
5
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Shen X, Li W, Cai H, Guo S, Li M, Liu Y, Sun Z. Metabolomics analysis reveals differences in milk metabolism and fermentation rate between individual Lactococcus lactis subsp. lactis strains. Food Res Int 2022; 162:111920. [DOI: 10.1016/j.foodres.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
7
|
Merenstein D, Fraser CM, Roberts RF, Liu T, Grant-Beurmann S, Tan TP, Smith KH, Cronin T, Martin OA, Sanders ME, Lucan SC, Kane MA. Bifidobacterium animalis subsp. lactis BB-12 Protects against Antibiotic-Induced Functional and Compositional Changes in Human Fecal Microbiome. Nutrients 2021; 13:nu13082814. [PMID: 34444974 PMCID: PMC8398419 DOI: 10.3390/nu13082814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
The administration of broad-spectrum antibiotics is often associated with antibiotic-associated diarrhea (AAD), and impacts gastrointestinal tract homeostasis, as evidenced by the following: (a) an overall reduction in both the numbers and diversity of the gut microbiota, and (b) decreased short-chain fatty acid (SCFA) production. Evidence in humans that probiotics may enhance the recovery of microbiota populations after antibiotic treatment is equivocal, and few studies have addressed if probiotics improve the recovery of microbial metabolic function. Our aim was to determine if Bifidobacterium animalis subsp. lactis BB-12 (BB-12)-containing yogurt could protect against antibiotic-induced fecal SCFA and microbiota composition disruptions. We conducted a randomized, allocation-concealed, controlled trial of amoxicillin/clavulanate administration (days 1-7), in conjunction with either BB-12-containing or control yogurt (days 1-14). We measured the fecal levels of SCFAs and bacterial composition at baseline and days 7, 14, 21, and 30. Forty-two participants were randomly assigned to the BB-12 group, and 20 participants to the control group. Antibiotic treatment suppressed the fecal acetate levels in both the control and probiotic groups. Following the cessation of antibiotics, the fecal acetate levels in the probiotic group increased over the remainder of the study and returned to the baseline levels on day 30 (-1.6% baseline), whereas, in the control group, the acetate levels remained suppressed. Further, antibiotic treatment reduced the Shannon diversity of the gut microbiota, for all the study participants at day 7. The magnitude of this change was larger and more sustained in the control group compared to the probiotic group, which is consistent with the hypothesis that BB-12 enhanced microbiota recovery. There were no significant baseline clinical differences between the two groups. Concurrent administration of amoxicillin/clavulanate and BB-12 yogurt, to healthy subjects, was associated with a significantly smaller decrease in the fecal SCFA levels and a more stable taxonomic profile of the microbiota over time than the control group.
Collapse
Affiliation(s)
- Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
- Department of Human Science, School of Nursing and Health Studies, Georgetown University Medical Center, Washington, DC 20057, USA
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| | - Claire M. Fraser
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| | - Robert F. Roberts
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Silvia Grant-Beurmann
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
| | - Tina P. Tan
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Keisha Herbin Smith
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Tom Cronin
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC 20057, USA; (T.P.T.); (K.H.S.); (T.C.)
| | - Olivia A. Martin
- Institute for Genomic Sciences, Departments of Medicine and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.G.-B.); (O.A.M.)
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Sean C. Lucan
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY 10461, USA;
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
- Correspondence: (D.M.); (C.M.F.); (M.A.K.); Tel.: +1-202-687-2745 (D.M.); +1-410-706-3879 (C.M.F.); +1-410-706-5097 (M.A.K.)
| |
Collapse
|
8
|
Farag MA, Saleh HA, El Ahmady S, Elmassry MM. Dissecting Yogurt: the Impact of Milk Types, Probiotics, and Selected Additives on Yogurt Quality. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1877301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
| | - Haidy A. Saleh
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Egypt
| | - Sherwet El Ahmady
- Pharmacognosy Department, College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
9
|
Safety and functional enrichment of gut microbiome in healthy subjects consuming a multi-strain fermented milk product: a randomised controlled trial. Sci Rep 2020; 10:15974. [PMID: 32994487 PMCID: PMC7524715 DOI: 10.1038/s41598-020-72161-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.
Collapse
|
10
|
Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis Sci 2020; 65:706-722. [PMID: 32002758 PMCID: PMC7046124 DOI: 10.1007/s10620-020-06092-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diet is a key regulator of microbiome structure and function across the lifespan. Microbial colonization in the first year of life has been actively researched; however, studies during childhood are sparse. Herein, the impact of dietary intake and pre- and probiotic interventions on microbiome composition of healthy infants and children from birth to adolescence is discussed. The microbiome of breastfed infants has lower microbial diversity and richness, higher Proteobacteria, and lower Bacteroidetes and Firmicutes than those formula-fed. As children consume more complex diets, associations between dietary patterns and the microbiota emerge. Like adults, the microbiota of children consuming a Western-style diet is associated with greater Bacteroidaceae and Ruminococcaceae and lower Prevotellaceae. Dietary fibers and pre- or/and probiotics have been tested to modulate the gut microbiota in early life. Human milk oligosaccharides and prebiotics added to infant formula are bifidogenic and decrease pathogens. In children, prebiotics, such as inulin, increase Bifidobacterium abundance and dietary fibers reduce fecal pH and increase alpha diversity and calcium absorption. Probiotics have been administered to the mother during pregnancy and breastfeeding or directly to the infant/child. Findings on maternal probiotic administration on bacterial taxa are inconsistent. When given directly to the infant/child, some changes in individual taxa are observed, but rarely is overall alpha or beta diversity affected. Cesarean-delivered infants appear to benefit to a greater degree than those born vaginally. Infancy and childhood represent an opportunity to beneficially manipulate the microbiome through dietary or prebiotic interventions, which has the potential to affect both short- and long-term health outcomes.
Collapse
|
11
|
Szajewska H, Hojsak I. Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children. Postgrad Med 2020; 132:441-451. [DOI: 10.1080/00325481.2020.1731214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Iva Hojsak
- Referral Center for Pediatric Gastroenterology and Nutrition, Children’s Hospital Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pediatrics, School of Medicine, University J.J. Strossmayer, Osijek, Croatia
| |
Collapse
|
12
|
Abstract
In this work, we studied the biotechnological potential of thirteen probiotic microorganisms currently used to improve human health. We discovered that the majority of the investigated bacteria are able to catalyze the hydration reaction of the unsaturated fatty acids (UFAs). We evaluated their biocatalytic activity toward the three most common vegetable UFAs, namely oleic, linoleic, and linolenic acids. The whole-cell biotransformation experiments were performed using a fatty acid concentration of 3 g/L in anaerobic conditions. Through these means, we assessed that the main part of the investigated strains catalyzed the hydration reaction of UFAs with very high regio- and stereoselectivity. Our biotransformation reactions afforded almost exclusively 10-hydroxy fatty acid derivatives with the single exception of Lactobacillus acidophilus ATCC SD5212, which converted linoleic acid in a mixture of 13-hydroxy and 10-hydroxy derivatives. Oleic, linoleic, and linolenic acids were transformed into (R)-10-hydroxystearic acid, (S)-(12Z)-10-hydroxy-octadecenoic, and (S)-(12Z,15Z)-10-hydroxy-octadecadienoic acids, respectively, usually with very high enantiomeric purity (ee > 95%). It is worth noting that the biocatalytic capabilities of the thirteen investigated strains may change considerably from each other, both in terms of activity, stereoselectivity, and transformation yields. Lactobacillus rhamnosus ATCC 53103 and Lactobacillus plantarum 299 V proved to be the most versatile, being able to efficiently and selectively hydrate all three investigated fatty acids.
Collapse
|
13
|
Bifidobacterium lactis Ameliorates the Risk of Food Allergy in Chinese Children by Affecting Relative Percentage of Treg and Th17 Cells. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:4561038. [PMID: 30651897 PMCID: PMC6311867 DOI: 10.1155/2018/4561038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022]
Abstract
We aimed to explore the therapeutic effect of Bifidobacterium lactis on food allergy by investigating the percentage of Treg and Th17 cells in Chinese children and related molecular mechanisms. A total of 256 children with food allergy were evenly assigned into two groups: BG, the children received 10 ml B. lactis (1 × 106/ml) daily, and CG, the children received the solution without B. lactis daily for three months. Allergic symptoms, serum IgE, and food antigen-specific IgE were measured. A mouse allergy model was established by using shrimp tropomyosin and treated with B. lactis. Relative mRNA levels of Treg- and Th17-associated cytokines were measured by using quantitative PCR. The percentage of Treg and Th17 cells in spleen were measured by using flow cytometry. After 3-month therapy, the allergic symptoms of the BG were remarkably reduced when compared with the CG (P < 0.05). Serum levels of IgE and food antigen-specific IgE were decreased too (P < 0.05). Similar results were also found in a mouse allergy model. After B. lactis treatment, the relative mRNA level of FoxP3 was significantly enhanced in the B. lactis therapy group when compared to positive controls. In addition, relative mRNA levels of FoxP3 and TGF-β associated with Treg cells were increased, whereas relative mRNA levels of IL-17A and IL-23 associated with Th17 were reduced. B. lactis treatment significantly increased the ratio of Treg and Th17 cells in a mouse allergy model (P < 0.05). B. lactis effectively alleviates allergic symptoms by increasing the ratio of Treg and Th17 cells.
Collapse
|