1
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Briere CE, Gomez J. Fresh Parent's Own Milk for Preterm Infants: Barriers and Future Opportunities. Nutrients 2024; 16:362. [PMID: 38337647 PMCID: PMC10857054 DOI: 10.3390/nu16030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
While direct at-the-breast feeding is biologically optimal, Neonatal Intensive Care Unit (NICU) admission due to infant immaturity or illness often necessitates the expression and storage of parent's milk. The provision of freshly expressed (never stored) parent's own milk to preterm infants is not widely prioritized, and this article provides an exploration of NICU practices and their implications for feeding premature or ill infants with parent's own milk. In this article, we discuss the potential biological benefits of fresh parent's own milk, highlighting its dynamic components and the changes incurred during storage. Research suggests that fresh milk may offer health advantages over stored milk. The authors advocate for further research, emphasizing the need for standardized definitions. Research is needed on the biological impact of fresh milk, both short- and long-term, as well as defining and understanding healthcare economics when using fresh milk.
Collapse
Affiliation(s)
- Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute of Nursing Research and Evidence-Based Practice, Connecticut Children’s, Hartford, CT 06106, USA
| | - Jessica Gomez
- Department of Pediatrics/Neonatal-Perinatal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Francese R, Peila C, Donalisio M, Lamberti C, Cirrincione S, Colombi N, Tonetto P, Cavallarin L, Bertino E, Moro GE, Coscia A, Lembo D. Viruses and Human Milk: Transmission or Protection? Adv Nutr 2023; 14:1389-1415. [PMID: 37604306 PMCID: PMC10721544 DOI: 10.1016/j.advnut.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Human milk (HM) is considered the best source of nutrition for infant growth and health. This nourishment is unique and changes constantly during lactation to adapt to the physiological needs of the developing infant. It is also recognized as a potential route of transmission of some viral pathogens although the presence of a virus in HM rarely leads to a disease in an infant. This intriguing paradox can be explained by considering the intrinsic antiviral properties of HM. In this comprehensive and schematically presented review, we have described what viruses have been detected in HM so far and what their potential transmission risk through breastfeeding is. We have provided a description of all the antiviral compounds of HM, along with an analysis of their demonstrated and hypothesized mechanisms of action. Finally, we have also analyzed the impact of HM pasteurization and storage methods on the detection and transmission of viruses, and on the antiviral compounds of HM. We have highlighted that there is currently a deep knowledge on the potential transmission of viral pathogens through breastfeeding and on the antiviral properties of HM. The current evidence suggests that, in most cases, it is unnecessarily to deprive an infant of this high-quality nourishment and that the continuation of breastfeeding is in the best interest of the infant and the mother.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Chiara Peila
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Cristina Lamberti
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Simona Cirrincione
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Nicoletta Colombi
- Biblioteca Federata di Medicina "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Laura Cavallarin
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy.
| | - Alessandra Coscia
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy.
| |
Collapse
|
4
|
Arduino I, Calvo J, Rittà M, Cabeza S, Llobera M, Lembo D, Gayà A, Donalisio M. Impact of time-temperature combinations on the anti-Cytomegalovirus activity and biological components of human milk. Pediatr Res 2023; 94:956-964. [PMID: 37059899 DOI: 10.1038/s41390-023-02606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND There is extensive evidence that Holder pasteurization (HoP) (30 min at 62.5 °C) has harmful effects on the bioactivities of human milk (HM). We previously demonstrated that lowering HoP temperature is sufficient to inactivate Cytomegalovirus (HCMV). Here, we analyzed the effect of lowering time/temperature on the antiviral activity against HCMV and IgA levels of HM. METHODS Eighty HM samples from five mothers were pasteurized in a range of temperature (62.5-56 °C) and time (40-10 min) in a conventional setting of Human Milk Bank. Unpasteurized HM from each mother was used as control. The samples were assayed against HCMV-AD169 strain in cell cultures and IgA levels were determined by ELISA. RESULTS All HM samples exhibited anti-HCMV activity, to a different extent. An improvement of antiviral activity was observed in samples treated at 60, 58 and 56 °C compared to those at 62.5 °C, with ID50 values near those of unpasteurized milk. Similarly, better retention in IgA levels was observed by reducing the temperature of treatment. CONCLUSIONS We demonstrated that a 2.5 °C reduction of heat treatment significantly preserved the IgA content and fully restored the anti-HCMV activity of HM, supporting this variant of HoP as a valid alternative to preserve HM bioactivities. IMPACT This work questions the standard HoP and opens the debate on whether the pasteurization temperature commonly used in Human Milk Banks should be lowered to better preserve the biological components of the milk. A reduction of HoP temperature at 60 °C determined a significant preservation of anti-HCMV activity and IgA content of donor HM, compared to standard HoP. This alternative HoP is highly feasible compared to other substitute pasteurization techniques, since it would employ the same pasteurizer equipment found in most Human Milk Banks.
Collapse
Affiliation(s)
- Irene Arduino
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano, Italy
| | - Javier Calvo
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
- Cell Therapy and Tissue Engineering Group (TERCIT), Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano, Italy
| | - Sergio Cabeza
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Llobera
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano, Italy
| | - Antoni Gayà
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
- Cell Therapy and Tissue Engineering Group (TERCIT), Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano, Italy.
| |
Collapse
|
5
|
Chishiki M, Nishiyama K, Suzutani T, Hiruta S, Ichikawa H, Haneda K, Maeda H, Shimizu H, Kanai Y, Ogasawara K, Go H, Sato M, Momoi N, Nollet KE, Ohto H, Hosoya M. Sterilization efficacy of a new water-free breast milk pasteurizer. Pediatr Int 2023; 65:e15574. [PMID: 37428826 DOI: 10.1111/ped.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Breast milk, nature's optimum source of nutrition for infants, can contain undesirable microorganisms that cause severe morbidity. After an outbreak of multidrug-resistant Escherichia coli among neonates receiving breast milk donated by another mother in our neonatal intensive care unit (NICU), we were motivated to develop a high-grade breast milk pasteurizer (BMP) designed to thaw and pasteurize breast milk at 63°C for 30 min in a sealed bag without having to open the bag or immerse it in water. METHODS Pre-existing bacteria and spiked cytomegalovirus (CMV) were measured pre- and post-pasteurization in frozen breast milk donated by mothers of children admitted to the NICU. RESULTS Among 48 breast milk samples (mean ± standard deviation [SD]), pre-existing bacterial counts of 5.1±1.1 × 104 colony forming units (cfu)/mL decreased to less than 10 cfu/mL (below detection level) in 45 samples after pasteurization for 30 min. In three samples, 10-110 cfu/mL persisted. As no CMV was detected in any of the 48 samples, CMV at ≥5 × 104 pfu/mL was spiked into 11 breast milk samples. After just 10 min of pasteurization, infectious CMV was not detected (threshold <50 pfu/mL) in any sample. CONCLUSION A new BMP was shown to pasteurize milk effectively with more than a 3-log reduction of microorganisms. Compared to conventional pasteurizers, this device reduces the effort involved in pasteurizing breast milk, avoids various contamination risks, and may reduce the risk of infectious disease transmission via breast milk.
Collapse
Affiliation(s)
- Mina Chishiki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kyoko Nishiyama
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shun Hiruta
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirotaka Ichikawa
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kentaro Haneda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromi Shimizu
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Kanai
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kei Ogasawara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Maki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nobuo Momoi
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
6
|
Kothari A, Pitino MA, Unger S, Perreault V, Doyen A, Pouliot Y, McGeer AJ, Stone D, O’Connor DL. Preservation of Anti-cytomegalovirus Activity in Human Milk Following High-Pressure Processing Compared to Holder Pasteurization. Front Nutr 2022; 9:918814. [PMID: 35662924 PMCID: PMC9160983 DOI: 10.3389/fnut.2022.918814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Pasteurized donor human milk is recommended for hospitalized preterm infants when mother’s own milk is unavailable. Our aim was to compare the antiviral activity of human milk processed by Holder pasteurization (HoP) or high-pressure processing (HPP) against representative enveloped and non-enveloped viruses including cytomegalovirus and hepatitis A virus. Expressed milk from 20 donors collected from the Ontario Milk Bank was combined into 10 pools, each from two unique donors. Each pool was processed by HoP (62.5°C, 30 min) or HPP (500 MPa, 8 min, 4°C) and subsequently inoculated with cytomegalovirus or hepatitis A virus to achieve a final concentration of 5-log plaque-forming units/mL. Plaque reduction assays were used to quantify detectable virus after 30 min incubation (room temperature). Post hoc experiments using a 4 h incubation time were conducted if reductions were detected at 30 min. Irrespective of processing, cytomegalovirus concentrations declined in all pools after 30 min incubation (P < 0.0001). Milk processed by HoP exhibited significantly less reduction compared to raw milk (P = 0.0069). In post hoc experiments, anti-cytomegalovirus activity was maintained at 4 h, with high inter-pool variability. Hepatitis A virus concentration remained unchanged after 30 min incubation in raw and processed milk. Anti-cytomegalovirus activity in human milk is preserved following HoP and HPP, persisting up to 4 h post-inoculation; anti-hepatitis A virus activity was not observed in raw or processed milk. Further research is needed to understand how HoP or promising alternative processing methods affect the antiviral activity of donated milk, given its potential importance to recipient infants.
Collapse
Affiliation(s)
- Akash Kothari
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael A. Pitino
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
| | - Véronique Perreault
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Alain Doyen
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Yves Pouliot
- Centre de Recherche en Sciences et Technologie du Lait (STELA), Département des Sciences des Aliments et de Nutrition, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC, Canada
| | - Allison J. McGeer
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, Sinai Health, Toronto, ON, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
| | - Deborah L. O’Connor
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, Sinai Health, Toronto, ON, Canada
- Rogers Hixon Ontario Human Milk Bank, Sinai Health, Toronto, ON, Canada
- *Correspondence: Deborah L. O’Connor,
| |
Collapse
|
7
|
Francese R, Donalisio M, Rittà M, Capitani F, Mantovani V, Maccari F, Tonetto P, Moro GE, Bertino E, Volpi N, Lembo D. Human milk glycosaminoglycans inhibit cytomegalovirus and respiratory syncytial virus infectivity by impairing cell binding. Pediatr Res 2022:10.1038/s41390-022-02091-y. [PMID: 35513714 DOI: 10.1038/s41390-022-02091-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The antiviral role of glycosaminoglycans in human milk (HM-GAGs) has been poorly investigated. They are highly sulfated polysaccharides, which were proposed to act as decoy receptors according to their structure. The aim of this study is to evaluate the antiviral potential and the mechanism of action of total and individual HM-GAGs against three pediatric clinically relevant viruses: respiratory syncytial virus (RSV), cytomegalovirus (HCMV), and rotavirus. METHODS HM-GAGs were isolated from HM and a library of individual GAGs, structurally related to HM-GAGs, was prepared. The antiviral activity of HM-GAGs and the impact of thermal treatment were investigated in vitro by specific antiviral assays. RESULTS We demonstrated that HM-GAGs are endowed with anti-HCMV and anti-RSV activity and that they act by altering virus attachment to cell. We clarified the contribution of individual HM-GAGs, showing a specific structure-related activity. We did not observe any alteration of HM-GAG antiviral activity after thermal treatment. CONCLUSIONS We showed that HM-GAGs contribute to the overall antiviral activity of HM, likely exerting a synergic action with other HM antiviral agents. HM-GAGs can now be added to the list of endogenous factors that may reduce breast-milk-acquired HCMV symptomatic infections and protecting infants from respiratory tract infections by RSV. IMPACT HM-GAGs have been poorly investigated for their antiviral action so far. We demonstrated that HM-GAGs are endowed with significant anti-HCMV and anti-RSV activity and that they are able to alter virus binding to the cell. The contribution of individual HM-GAGs is mainly exerted by the FMHep and is not based on a simple charge interaction between the virus and sulfate groups but involves a specific GAG structural configuration. Our results contribute to identifying the multiple factors synergically acting in mediating HM antiviral properties and to clarifying their specific mechanism of action.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Mantovani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy.
| |
Collapse
|
8
|
Sureram S, Arduino I, Ueoka R, Rittà M, Francese R, Srivibool R, Darshana D, Piel J, Ruchirawat S, Muratori L, Lembo D, Kittakoop P, Donalisio M. The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells. Int J Mol Sci 2022; 23:947. [PMID: 35055133 PMCID: PMC8778767 DOI: 10.3390/ijms23020947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.
Collapse
Affiliation(s)
- Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Reiko Ueoka
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | | | - Dhanushka Darshana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, 10043 Orbassano, Italy;
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| |
Collapse
|
9
|
Morniroli D, Consales A, Crippa BL, Vizzari G, Ceroni F, Cerasani J, Colombo L, Mosca F, Giannì ML. The Antiviral Properties of Human Milk: A Multitude of Defence Tools from Mother Nature. Nutrients 2021; 13:694. [PMID: 33671491 PMCID: PMC7926697 DOI: 10.3390/nu13020694] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
The anti-infective properties of breast milk have been known for decades. In recent years, an increasing number of papers have described the variety of bioactive compounds that are present in breast milk with varying degrees of antiviral activity. However, to date, the totality of the properties of these compounds is not fully understood and, above all, their synergistic interaction is not yet known. The purpose of this review is to describe the current knowledge about the antiviral compounds in breast milk, both with specific and non-specific action against pathogens. Due to the current pandemic situation from SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus-2), research has focused on a multitude of potential antiviral substances, taking breast milk as a biological model of reference. Future research is needed to expand the knowledge of these compounds, which will hopefully assist in the development of therapies applicable even at later ages.
Collapse
Affiliation(s)
- Daniela Morniroli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
| | - Alessandra Consales
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
| | - Beatrice Letizia Crippa
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, 20122 Milan, Italy; (B.L.C.); (L.C.)
| | - Giulia Vizzari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
| | - Federica Ceroni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
| | - Jacopo Cerasani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
| | - Lorenzo Colombo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, 20122 Milan, Italy; (B.L.C.); (L.C.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, 20122 Milan, Italy; (B.L.C.); (L.C.)
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (D.M.); (G.V.); (F.C.); (J.C.); (F.M.); (M.L.G.)
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, 20122 Milan, Italy; (B.L.C.); (L.C.)
| |
Collapse
|
10
|
Civra A, Francese R, Donalisio M, Tonetto P, Coscia A, Sottemano S, Balestrini R, Faccio A, Cavallarin L, Moro GE, Bertino E, Lembo D. Human Colostrum and Derived Extracellular Vesicles Prevent Infection by Human Rotavirus and Respiratory Syncytial Virus in Vitro. J Hum Lact 2021; 37:122-134. [PMID: 33534629 DOI: 10.1177/0890334420988239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is known that breastfeeding protects the infant from enteric and respiratory infections; however, the antiviral properties of human milk against enteric and respiratory viruses are largely unexplored. RESEARCH AIMS To explore the antiviral activity of human preterm colostrum against rotavirus and respiratory syncytial virus and to assess whether the derived extracellular vesicle contribute to this activity. METHODS We used a cross-sectional, prospective two-group non-experimental design. Colostra were collected from mothers of preterm newborns (N = 10) and extracellular vesicles were purified and characterized. The antiviral activity of colostra and derived extracellular vesicles were tested in vitro against rotavirus and respiratory syncytial virus and the step of viral replication inhibited by extracellular vesicles was investigated. RESULTS Each sample of colostrum and colostrum-derived extracellular vesicles had significant antiviral activity with a wide interpersonal variability. Mechanism of action studies demonstrated that extracellular vesicles acted by interfering with the early steps of the viral replicative cycle. CONCLUSION We demonstrated the intrinsic antiviral activity of human colostrum against rotavirus and respiratory syncytial virus and we showed that extracellular vesicles substantially contribute to the overall protective effect. Our results contribute to unravelling novel mechanisms underlying the functional role of human milk as a protective and therapeutic agent in preterm infants.
Collapse
Affiliation(s)
- Andrea Civra
- 93149314 Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Rachele Francese
- 93149314 Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Manuela Donalisio
- 93149314 Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Paola Tonetto
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Alessandra Coscia
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Stefano Sottemano
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Turin Unit, Italy
| | - Antonella Faccio
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Turin Unit, Italy
| | - Laura Cavallarin
- 9327 Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Grugliasco (TO), Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Milan, Italy
| | - Enrico Bertino
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - David Lembo
- 93149314 Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
11
|
Gayà A, Rittà M, Lembo D, Tonetto P, Cresi F, Sottemano S, Bertino E, Moro GE, Calvo J, Donalisio M. Analysis of Thermal Sensitivity of Human Cytomegalovirus Assayed in the Conventional Conditions of a Human Milk Bank. Front Pediatr 2021; 9:640638. [PMID: 34386465 PMCID: PMC8353116 DOI: 10.3389/fped.2021.640638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
One of the main concerns in human milk banks (HMB) is the transmission of human cytomegalovirus (HCMV) that could be present in the milk of infected women. There are consistent data showing that this virus is destroyed by Holder pasteurization (62.5°C for 30 min), but there is a lack of information about the response of the virus to the treatment at lower temperatures in strict HMB conditions. In order to analyze the effectiveness of different temperatures of pasteurization to eliminate HCMV in human milk, a preliminary assay was performed incubating HCMV-spiked raw milk samples from donor mothers at tested temperatures in a PCR thermocycler and the viral infectivity was assayed on cell cultures. No signs of viral replication were observed after treatments at temperatures equal or >53°C for 30, 20, and 10 min, 58°C for 5 min, 59°C for 2 min, and 60°C for 1 min. These data were confirmed in a pasteurizer-like model introducing HCMV-spiked milk in disposable baby bottles. No viral infectivity was detected on cell cultures after heating treatment of milk for 30 min at temperatures from 56 to 60°C. Thus, our results show that by using conventional pasteurization conditions, temperatures in the range of 56-60°C are enough to inactivate HCMV. Consequently, we consider that, in order to provide a higher quality product, the current recommendation to pasteurize both mother's own milk and donated milk at 62.5°C must be re-evaluated.
Collapse
Affiliation(s)
- Antoni Gayà
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain.,Cell Therapy and Tissue Engineering Group (TERCIT), Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Massimo Rittà
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Paola Tonetto
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Francesco Cresi
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Stefano Sottemano
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Enrico Bertino
- Neonatal Care Unit of the University, City of Health and Science Hospital, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Milan, Italy
| | - Javier Calvo
- Banc de Teixits, Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain.,Cell Therapy and Tissue Engineering Group (TERCIT), Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Francese R, Civra A, Donalisio M, Volpi N, Capitani F, Sottemano S, Tonetto P, Coscia A, Maiocco G, Moro GE, Bertino E, Lembo D. Anti-Zika virus and anti-Usutu virus activity of human milk and its components. PLoS Negl Trop Dis 2020; 14:e0008713. [PMID: 33027261 PMCID: PMC7571670 DOI: 10.1371/journal.pntd.0008713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/19/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
The benefits of human milk are mediated by multiple nutritional, trophic, and immunological components, able to promote infant's growth, maturation of its immature gut, and to confer protection against infections. Despite these widely recognized properties, breast-feeding represents an important mother-to-child transmission route of some viral infections. Different studies show that some flaviviruses can occasionally be detected in breast milk, but their transmission to the newborn is still controversial. The aim of this study is to investigate the antiviral activity of human milk (HM) in its different stages of maturation against two emerging flaviviruses, namely Zika virus (ZIKV) and Usutu virus (USUV) and to verify whether HM-derived extracellular vesicles (EVs) and glycosaminoglycans (GAGs) contribute to the milk protective effect. Colostrum, transitional and mature milk samples were collected from 39 healthy donors. The aqueous fractions were tested in vitro with specific antiviral assays and EVs and GAGs were derived and characterized. HM showed antiviral activity against ZIKV and USUV at all the stages of lactation with no significant differences in the activity of colostrum, transitional or mature milk. Mechanism of action studies demonstrated that colostrum does not inactivate viral particles, but it hampers the binding of both flaviviruses to cells. We also demonstrated that HM-EVs and HM-GAGs contribute, at least in part, to the anti-ZIKV and anti-USUV action of HM. This study discloses the intrinsic antiviral activity of HM against ZIKV and USUV and demonstrates the contribution of two bioactive components in mediating its protective effect. Since the potential infectivity of HM during ZIKV and USUV infection is still unclear, these data support the World Health Organization recommendations about breast-feeding during ZIKV infection and could contribute to producing new guidelines for a possible USUV epidemic.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sottemano
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Giulia Maiocco
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E. Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| |
Collapse
|
13
|
Donalisio M, Cirrincione S, Rittà M, Lamberti C, Civra A, Francese R, Tonetto P, Sottemano S, Manfredi M, Lorenzato A, Moro GE, Giribaldi M, Cavallarin L, Giuffrida MG, Bertino E, Coscia A, Lembo D. Extracellular Vesicles in Human Preterm Colostrum Inhibit Infection by Human Cytomegalovirus In Vitro. Microorganisms 2020; 8:microorganisms8071087. [PMID: 32708203 PMCID: PMC7409124 DOI: 10.3390/microorganisms8071087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Breast milk is a complex biofluid that nourishes infants, supports their growth and protects them from diseases. However, at the same time, breastfeeding is a transmission route for human cytomegalovirus (HCMV), with preterm infants being at a great risk of congenital disease. The discrepancy between high HCMV transmission rates and the few reported cases of infants with severe clinical illness is likely due to the protective effect of breast milk. The aim of this study was to investigate the anti-HCMV activity of human preterm colostrum and clarify the role of colostrum-derived extracellular vesicles (EVs). Preterm colostrum samples were collected and the EVs were purified and characterized. The in vitro anti-HCMV activity of both colostrum and EVs was tested against HCMV, and the viral replication step inhibited by colostrum-purified EVs was examined. We investigated the putative role EV surface proteins play in impairing HCMV infection using shaving experiments and proteomic analysis. The obtained results confirmed the antiviral action of colostrum against HCMV and demonstrated a remarkable antiviral activity of colostrum-derived EVs. Furthermore, we demonstrated that EVs impair the attachment of HCMV to cells, with EV surface proteins playing a role in mediating this action. These findings contribute to clarifying the mechanisms that underlie the protective role of human colostrum against HCMV infection.
Collapse
Affiliation(s)
- Manuela Donalisio
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (M.R.); (A.C.); (R.F.); (D.L.)
- Correspondence: (M.D.); (A.C.); Tel.: +39-011-6705427 (M.D.); +39-011-3134437 (A.C.)
| | - Simona Cirrincione
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (TO), Italy; (S.C.); (C.L.); (L.C.); (M.G.G.)
| | - Massimo Rittà
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (M.R.); (A.C.); (R.F.); (D.L.)
| | - Cristina Lamberti
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (TO), Italy; (S.C.); (C.L.); (L.C.); (M.G.G.)
| | - Andrea Civra
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (M.R.); (A.C.); (R.F.); (D.L.)
| | - Rachele Francese
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (M.R.); (A.C.); (R.F.); (D.L.)
| | - Paola Tonetto
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy; (P.T.); (S.S.); (E.B.)
| | - Stefano Sottemano
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy; (P.T.); (S.S.); (E.B.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, 28100 Novara, Italy;
| | - Annalisa Lorenzato
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy;
- Department of Oncology, University of Turin, 10060 Candiolo (TO), Italy
| | - Guido E. Moro
- Italian Association of Human Milk Banks, 20126 Milano, Italy;
| | - Marzia Giribaldi
- Research Centre for Engineering and Agro-food Processing (CREA), 10135 Torino, Italy;
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (TO), Italy; (S.C.); (C.L.); (L.C.); (M.G.G.)
| | - Maria Gabriella Giuffrida
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (TO), Italy; (S.C.); (C.L.); (L.C.); (M.G.G.)
| | - Enrico Bertino
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy; (P.T.); (S.S.); (E.B.)
| | - Alessandra Coscia
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy; (P.T.); (S.S.); (E.B.)
- Correspondence: (M.D.); (A.C.); Tel.: +39-011-6705427 (M.D.); +39-011-3134437 (A.C.)
| | - David Lembo
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (M.R.); (A.C.); (R.F.); (D.L.)
| |
Collapse
|
14
|
Donalisio M, Rittà M, Francese R, Civra A, Tonetto P, Coscia A, Giribaldi M, Cavallarin L, Moro GE, Bertino E, Lembo D. High Temperature-Short Time Pasteurization Has a Lower Impact on the Antiviral Properties of Human Milk Than Holder Pasteurization. Front Pediatr 2018; 6:304. [PMID: 30460212 PMCID: PMC6232822 DOI: 10.3389/fped.2018.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Holder pasteurization (62. 5°C for 30 min) is recommended by all international human milk bank guidelines to prevent infections potentially transmitted by donor human milk. A drawback is that it affects some human milk bioactive and nutritive components. Recently, High Temperature-Short Time (HTST) pasteurization has been reported to be a valuable alternative technology to increase the retention of some biological features of human milk. Nevertheless, to date, few data are available about the impact of pasteurization methods other than Holder on the antiviral activity of human milk. The present study was aimed at evaluating the antiviral activity of human milk against a panel of viral pathogens common in newborns and children (i.e., herpes simplex virus 1 and 2, cytomegalovirus, respiratory syncytial virus, rotavirus, and rhinovirus), and at assessing the effect of Holder and HTST pasteurization on milk's antiviral properties. The results indicate that human milk is endowed with antiviral activity against all viruses tested, although to a different extent. Unlike the Holder pasteurization, HTST preserved the inhibitory activity against cytomegalovirus, respiratory syncytial virus, rotavirus and herpes simplex virus type 2. By contrast, both methods reduced significantly the antiviral activities against rhinovirus and herpes simplex virus type 1. Unexpectedly, Holder pasteurization improved milk's anti-rotavirus activity. In conclusion, this study contributes to the definition of the pasteurization method that allows the best compromise between microbiological safety and biological quality of the donor human milk: HTST pasteurization preserved milk antiviral activity better than Holder.
Collapse
Affiliation(s)
- Manuela Donalisio
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Massimo Rittà
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Andrea Civra
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Paola Tonetto
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marzia Giribaldi
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Bari, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Milan, Italy
| | - Enrico Bertino
- Neonatal Intensive Care Unit, Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|