1
|
Hadrich I, Turki M, Chaari I, Abdelmoula B, Gargouri R, Khemakhem N, Elatoui D, Abid F, Kammoun S, Rekik M, Aloulou S, Sehli M, Mrad AB, Neji S, Feiguin FM, Aloulou J, Abdelmoula NB, Sellami H. Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential. Front Cell Neurosci 2025; 18:1495224. [PMID: 39845646 PMCID: PMC11750820 DOI: 10.3389/fncel.2024.1495224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders. Objective This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy. Methods We summarized recent findings from metagenomic analyses that characterize the diversity and composition of gut mycobiota and discuss how these communities interact with the host and other microorganisms via the gut-brain axis. Key methodologies for studying mycobiota, such as high-throughout sequencing and bioinformatics approaches, were also reviewed to highlight advances in the field. Results Emerging research links gut mycobiota dysbiosis to conditions such as schizophrenia, Alzheimer's disease, autism spectrum disorders, bipolar disorder, and depression. Studies indicate that specific fungal populations, such as Candida and Saccharomyces, may influence neuroinflammation, gut permeability and immune responses, thereby affecting mental health outcomes. Conclusion Understanding the gut mycobiome's role in neuropsychiatric disorders opens new avenues for therapeutic interventions, including antifungal treatments, probiotics, and dietary modifications. Future research should integrate multi-omics approaches to unravel the complex interkingdom interactions within the gut ecosystem, paving the way for personalized medicine in mental health care.
Collapse
Affiliation(s)
- Ines Hadrich
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mariem Turki
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Chaari
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Balkiss Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Rahma Gargouri
- Department of Pneumology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemakhem
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Dhawia Elatoui
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Abid
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Sonda Kammoun
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Mona Rekik
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Samir Aloulou
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Medical Carcinology Department, Mohamed Ben Sassi University Hospital of Gabes, Faculty of Medicine, Sfax, Tunisia
| | - Mariem Sehli
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Aymen Ben Mrad
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
- Ophthalmology Department, Habib Bourguiba University Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Sourour Neji
- Fungal and Parasitic Molecular Biology Laboratory LR 05ES11, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fabian M. Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jihene Aloulou
- Psychiatry “B” Department, Hedi Chaker University Hospital, Sfax, Tunisia
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nouha Bouayed Abdelmoula
- Genomics of Signalopathies at the Service of Precision Medicine LR23ES07 FMS, University of Sfax, Sfax, Tunisia
| | - Hayet Sellami
- Reserach Unit “Drosophila”UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Parasitology and Mycology Laboratory - Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
2
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
3
|
Clavenna A, Cartabia M, Fortino I, Bonati M. Drug prescription profile in children with autism spectrum disorders. Eur J Clin Pharmacol 2024; 80:297-299. [PMID: 38117333 DOI: 10.1007/s00228-023-03610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Antonio Clavenna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, 20156, Italy.
| | - Massimo Cartabia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, 20156, Italy
| | - Ida Fortino
- Directorate General for Health, Lombardy Region, Milan, Italy
| | - Maurizio Bonati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan, 20156, Italy
| |
Collapse
|
4
|
Mathew NE, McCaffrey D, Walker AK, Mallitt KA, Masi A, Morris MJ, Ooi CY. The search for gastrointestinal inflammation in autism: a systematic review and meta-analysis of non-invasive gastrointestinal markers. Mol Autism 2024; 15:4. [PMID: 38233886 PMCID: PMC10795298 DOI: 10.1186/s13229-023-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Gastrointestinal symptoms and inflammatory gastrointestinal diseases exist at higher rates in the autistic population. It is not clear however whether autism is associated with elevated gastrointestinal inflammation as studies examining non-invasive faecal biomarkers report conflicting findings. To understand the research landscape and identify gaps, we performed a systematic review and meta-analysis of studies measuring non-invasive markers of gastrointestinal inflammation in autistic and non-autistic samples. Our examination focused on faecal biomarkers as sampling is non-invasive and these markers are a direct reflection of inflammatory processes in the gastrointestinal tract. METHODS We extracted data from case-control studies examining faecal markers of gastrointestinal inflammation. We searched PubMed, Embase, Cochrane CENTRAL, CINAHL, PsycINFO, Web of Science Core Collection and Epistemonikos and forward and backwards citations of included studies published up to April 14, 2023 (PROSPERO CRD42022369279). RESULTS There were few studies examining faecal markers of gastrointestinal inflammation in the autistic population, and many established markers have not been studied. Meta-analyses of studies examining calprotectin (n = 9) and lactoferrin (n = 3) were carried out. A total of 508 autistic children and adolescents and 397 non-autistic children and adolescents were included in the meta-analysis of calprotectin studies which found no significant group differences (ROM: 1.30 [0.91, 1.86]). Estimated differences in calprotectin were lower in studies with siblings and studies which did not exclude non-autistic controls with gastrointestinal symptoms. A total of 139 autistic participants and 75 non-autistic controls were included in the meta-analysis of lactoferrin studies which found no significant group differences (ROM: 1.27 [0.79, 2.04]). LIMITATIONS All studies included in this systematic review and meta-analysis examined children and adolescents. Many studies included non-autistic controls with gastrointestinal symptoms which limit the validity of their findings. The majority of studies of gastrointestinal inflammation focused on children under 12 with few studies including adolescent participants. Most studies that included participants aged four or under did not account for the impact of age on calprotectin levels. Future studies should screen for relevant confounders, include larger samples and explore gastrointestinal inflammation in autistic adolescents and adults. CONCLUSIONS There is no evidence to suggest higher levels of gastrointestinal inflammation as measured by calprotectin and lactoferrin are present in autistic children and adolescents at the population level. Preliminary evidence suggests however that higher calprotectin levels may be present in a subset of autistic participants, who may be clinically characterised by more severe gastrointestinal symptoms and higher levels of autistic traits.
Collapse
Affiliation(s)
- Nisha E Mathew
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
| | - Delyse McCaffrey
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3800, Australia
| | - Kylie-Ann Mallitt
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anne Masi
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Chee Y Ooi
- School of Clinical Medicine, Discipline of Paediatrics and Child Health, UNSW Medicine and Health, University of New South Wales, Sydney, 2052, Australia.
- Department of Gastroenterology, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
| |
Collapse
|