1
|
Neuritin Promotes Bone Marrow-Derived Mesenchymal Stem Cell Migration to Treat Diabetic Peripheral Neuropathy. Mol Neurobiol 2022; 59:6666-6683. [DOI: 10.1007/s12035-022-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
2
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
3
|
Chiu M, Taurino G, Dander E, Bardelli D, Fallati A, Andreoli R, Bianchi MG, Carubbi C, Pozzi G, Galuppo L, Mirandola P, Rizzari C, Tardito S, Biondi A, D’Amico G, Bussolati O. ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment. Blood Adv 2021; 5:5164-5178. [PMID: 34614505 PMCID: PMC9153005 DOI: 10.1182/bloodadvances.2020004041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Donatella Bardelli
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Galuppo
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; and
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea Biondi
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Giovanna D’Amico
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Heirani-Tabasi A, Naderi-Meshkin H, Matin MM, Mirahmadi M, Shahriyari M, Ahmadiankia N, Sanjar Moussavi N, Bidkhori HR, Raeesolmohaddeseen M, Bahrami AR. Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant. Cell Adh Migr 2018; 12:118-126. [PMID: 29466916 DOI: 10.1080/19336918.2016.1243643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Use of mesenchymal stem cells (MSCs) has been introduced as a promising tool, for structural and functional recovery of damaged tissues/organs. Studies have indicated that interactions between chemokine receptors and their ligands have a critical role in homing of MSCs to the site of injury. Although CXCR4 variants have been characterized, the exact role of each transcript in homing has remained unclear. In this study, cells were pretreated with various hypoxia-mimicking compounds (valproic acid, cobalt-chloride, and deferoxamine mesylate). Results indicated that both variants of CXCR4 were overexpressed after 24 hours of treatments and their expression could cooperatively induce and promote the cell migration. Moreover, deferoxamine mesylate was more effective in overexpression of variant A (lo), which resulted in higher level of CXCR4 protein and the highest rate of migration of the cells. In conclusion, our findings may have important potential implications in clinical applications, reinforcing the concept that manipulating the expression of specific CXCR4 variants may increase migration of MSCs.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Hojjat Naderi-Meshkin
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Maryam M Matin
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran.,c Cell and Molecular Biotechnology Research Group , Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mahdi Mirahmadi
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Mina Shahriyari
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | | | - Nasser Sanjar Moussavi
- e Department of Surgery , Faculty of Medicine, Islamic Azad University-Mashhad Branch , Iran
| | - Hamid Reza Bidkhori
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Mahmood Raeesolmohaddeseen
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Ahmad Reza Bahrami
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran.,c Cell and Molecular Biotechnology Research Group , Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
5
|
Insights into defective serological memory after acute lymphoblastic leukaemia treatment: The role of the plasma cell survival niche, memory B-cells and gut microbiota in vaccine responses. Blood Rev 2018; 32:71-80. [DOI: 10.1016/j.blre.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
6
|
Genitsari S, Stiakaki E, Perdikogianni C, Martimianaki G, Pelagiadis I, Pesmatzoglou M, Kalmanti M, Dimitriou H. Biological Features of Bone Marrow Mesenchymal Stromal Cells in Childhood Acute Lymphoblastic Leukemia. Turk J Haematol 2017; 35:19-26. [PMID: 28884706 PMCID: PMC5843770 DOI: 10.4274/tjh.2017.0209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: Mesenchymal stromal cells (MSCs) have a supportive role in hematopoiesis and as components of the bone marrow (BM) microenvironment may present alterations during acute lymphoblastic leukemia (ALL) and be affected by chemotherapeutic agents. We examined the biological and functional characteristics of MSCs in ALL diagnosis and treatment and their effect on MSC qualitative properties. Materials and Methods: Immunophenotypic characterization, evaluation of clonogenicity, and proliferative capacity were measured. Apoptotic features, cell-cycle analysis, and stromal cell-derived factor 1α and angiopoietin-1 levels in MSC supernatant at diagnosis and in different phases of treatment were assessed. Chemotherapy was administered according to the Berlin-Frankfurt-Munster-2000 protocol. BM samples from children with solid tumors without BM involvement were used as the control group. Results: The morphology, the immunophenotypic profile, and the apoptotic characteristics of the MSCs were not affected by leukemia. The secretion of factors involved in the trafficking of hematopoietic cells in the BM seems to be upregulated at diagnosis in comparison to the treatment phases. MSCs are influenced by the disease in terms of their functional characteristics such as clonogenicity and proliferation rate. These effects cease as soon as treatment is initiated. Chemotherapy does not seem to exert any effect on any of the MSC features examined. Conclusion: MSCs from children with ALL are affected by their interaction with the leukemic environment, but this phenomenon ceases upon treatment initiation, while no effect is observed by chemotherapy itself.
Collapse
Affiliation(s)
- Stella Genitsari
- Crete University Faculty of Medicine, University Hospital of Heraklion, Department of Pediatric Hematology and Oncology, Crete, Greece
| | - Eftichia Stiakaki
- Crete University Faculty of Medicine, University Hospital of Heraklion, Department of Pediatric Hematology and Oncology, Crete, Greece
| | | | - Georgia Martimianaki
- Crete University Faculty of Medicine, Division of Mother and Child Health, Crete, Greece
| | | | - Margarita Pesmatzoglou
- Crete University Faculty of Medicine, University Hospital of Heraklion, Department of Pediatric Hematology and Oncology, Crete, Greece
| | | | - Helen Dimitriou
- Crete University Faculty of Medicine, University Hospital of Heraklion, Department of Pediatric Hematology and Oncology, Crete, Greece
| |
Collapse
|
7
|
Karakurt N, Aksu T, Koksal Y, Yarali N, Tunc B, Uckan-Cetinkaya D, Ozguner M. Angiopoietins in the bone marrow microenvironment of acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2016; 21:325-31. [PMID: 26901808 DOI: 10.1080/10245332.2015.1125078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Angiogenesis have implications in leukemia biology. Angiopoietin 1 (Ang 1) is an angiogenic cytokine which is essential in survival and proliferation of endothelial cells. Angiopoietin 2 (Ang 2) promotes dissociation of pericytes and increases vascular permeability and stromal derived factor 1 alpha (SDF 1α) which is a key player in stem cell traffic in the bone marrow (BM), has stimulating effects on angiogenesis as well. Here, we investigated the role of the leukemic BM microenvironment and specifically, the role of SDF 1α-CXCR4 and Ang 1/Ang 2-Tie 2 axes. METHODS Here, Ang 1, Ang 2, and SDF 1α levels were measured in the BM plasma and in supernatants of mesenchymal stem/stromal cells (MSCs) of patients with ALL and compared with those of healthy controls. RESULTS The results showed that at diagnosis, BM plasma levels of Ang 1 and SDF 1α were significantly low and Ang 2 was high when compared to control values. Remission induction was associated with an increase in Ang 1/Ang 2 ratio and SDF levels in BM plasma. DISCUSSION The results suggest that BM microenvironment and leukemic cell-stroma interaction influences the secretion of Ang 1, 2 and SDF 1α, thus, may affect both angiogenesis, homing and mobilization of leukemic blasts.
Collapse
Affiliation(s)
- Neslihan Karakurt
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Tekin Aksu
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Yasin Koksal
- b Deparment of Pediatric Hematology/Oncology, Stem Cell Laboratory , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Nese Yarali
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Bahattin Tunc
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Duygu Uckan-Cetinkaya
- c Department of Pediatric Bone Marrow Transplantation , Hacettepe School of Medicine Ihsan Dogramaci Childrens' Hospital , Ankara , Turkey
| | - Meltem Ozguner
- b Deparment of Pediatric Hematology/Oncology, Stem Cell Laboratory , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| |
Collapse
|
8
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|