1
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Goel A, Hegarty R, Dixit S, Tucker B, Douiri A, Kyrana E, Jain V, Dhawan A, Grammatikopoulos T. Transient elastography and von Willebrand factor as predictors of portal hypertension and decompensation in children. JHEP Rep 2023; 5:100935. [PMID: 38046943 PMCID: PMC10692718 DOI: 10.1016/j.jhepr.2023.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 12/05/2023] Open
Abstract
Background & Aims Von Willebrand factor antigen (vWFAg), a protein measured to test the level of vWF released from the vascular endothelium has gained much attention as a marker for portal hypertension (PHT) severity. The objectives of this study were to investigate the use of vWFAg as a biomarker along with liver and spleen stiffness measurements by transient elastography as potential predictors of clinically significant varices (CSV), variceal bleeding (VB) and decompensation in children with PHT. Methods This observational prospective cohort study included 117 children (median age 10 [IQR 6-14] years) who underwent oesophagogastroduodenoscopy between January'2012 to November'2021 and a validation group of 33 children who underwent the same procedure between December'2021 to March'2023. Measurements of vWFAg and glycoprotein Ib binding activity of VWF (GPIbR) were available in 97 patients in the study group and in all patients in the validation group.Results: vWFAg and GPIbR were significantly higher in children with CSV (223 IU/dl and 166 IU/dl; p = 0.015 and p = 0.04, respectively) and VB (218 IU/dl and 174 IU/dl; p = 0.077 and p = 0.03, respectively) than in those without CSV or VB, respectively. Ninety-six patients had liver and spleen stiffness measurements. Spleen stiffness was significantly higher in patients with CSV compared to those without CSV (p = 0.003). In a chronic liver disease subgroup, a predictive scoring tool based on vWFAg, GPIbR, platelet count, and spleen/liver stiffness measurements could predict CSV with an AUROC of 0.76 (p = 0.04). Conclusions This study suggests the predictive value of vWF for CSV and VB increases when combined with spleen stiffness, with AUROCs of 0.88 and 0.82, respectively. Hence, a combination of biomarkers could assist clinicians in diagnosing CSV, preventing unnecessary invasive procedures. Impacts and implications Surveillance endoscopies in children with portal hypertension (PHT) have their own risks and non-invasive markers, such as von Willebrand factor antigen, glycoprotein Ib binding activity of VWF (GPIbR), and transient elastography could be used to predict clinically significant varices, variceal bleeding and disease compensation in children with PHT. Such non-invasive markers for PHT and varices are lacking in the paediatric population. The results show that von Willebrand factor and GPIbR along with transient elastography can be used to formulate a scoring system which can be used as a clinical tool by paediatric hepatologists to monitor the progression of PHT and risk of bleeding, and hence to stratify the performance of invasive endoscopic procedures under general anaesthesia. However, there is a need to validate the scoring system in children with portal vein thrombosis and for hepatic decompensation in a multi-centre registry in the future.
Collapse
Affiliation(s)
- Akshat Goel
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
| | - Robert Hegarty
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
- Institute of Liver Studies, King’s College London, London, UK
| | - Shweta Dixit
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
| | - Bethany Tucker
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
| | - Abdel Douiri
- Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Eirini Kyrana
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
- Institute of Liver Studies, King’s College London, London, UK
| | - Vandana Jain
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
- Institute of Liver Studies, King’s College London, London, UK
| | - Anil Dhawan
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
- Institute of Liver Studies, King’s College London, London, UK
| | - Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre and MowatLabs, King’s College Hospital, London, UK
- Institute of Liver Studies, King’s College London, London, UK
- Faculty of Life Sciences and Medicine, King’s College, London, UK
| |
Collapse
|